Share this content in WeChat
Clinical Article
Study of the value of MR T2 mapping in the evaluation of peripheral muscle changes in knee osteoarthritis
LI Junfei  WANG Yijing  ZHANG Xuesong  REN Congcong  HOU Zishuo  ZHAO Jian  CUI Jianling  YU Hong 

Cite this article as: LI J F, WANG Y J, ZHANG X S, et al. Study of the value of MR T2 mapping in the evaluation of peripheral muscle changes in knee osteoarthritis[J]. Chin J Magn Reson Imaging, 2023, 14(3): 117-121, 133. DOI:10.12015/issn.1674-8034.2023.03.020.

[Abstract] Objective To analyze the change of T2 value of periknee muscle in patients with knee osteoarthritis (KOA) and its relationship with the severity of KOA based on T2 mapping.Materials and Methods In this study, 38 patients with KOA and 16 healthy volunteers were prospectively recruited for knee MR examination and peripheral muscle T2 mapping sequence scanning, to compare the differences in muscle T2 between the two groups, and to analyze the correlation between each muscle T2 values and the severity of KOA. Whole-Organ Magnetic Resonance Imaging Score (WORMS) was used to evaluate the severity of KOA. The higher the WORMS, the higher the severity of structural damage. The relationship between T2 values of each muscle and WORMS of knee joint was analyzed. At the same time, the correlation between the articular cartilage and submarrow edema scores and T2 values of each muscle was analyzed.Results The T2 values of the muscles around the knee joint in KOA patients were higher than those in healthy volunteers. The correlation analysis between muscle T2 value and WORMS showed that the T2 values of sartorius muscle, vastus medialis, muscle, and gastrocnemius medial head were positively correlated with WORMS (r=0.678, 0.674, 0.466, P<0.05) and articular cartilage score (r=0.590, 0.672, 0.424, P<0.05); T2 values of sartorius and vastus medialis were positively correlated with subarticular bone marrow edema (r=0.527, 0.538, P<0.05). Hemiembranial muscle T2 value was positively correlated with articular cartilage score (r=0.347, P<0.05).Conclusions MR T2 mapping can sensitively and quantitatively assess the muscle changes around the knee in patients with KOA. As the severity of KOA increases, T2 values in some muscles increase. T2 value of skeletal muscle can be used as a sensitive index to reflect the changes of internal structure and composition of skeletal muscle in KOA patients.
[Keywords] knee joint;osteoarthritis;T2 mapping;muscle;magnetic resonance imaging

LI Junfei1   WANG Yijing2   ZHANG Xuesong1   REN Congcong1   HOU Zishuo1   ZHAO Jian1   CUI Jianling1   YU Hong1*  

1 Department of CT/MR, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China

2 Department of Radiology, Hebei General Hospital, Shijiazhuang 050051, China

Corresponding author: Yu H, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS 2023 Hebei Provincial Medical Science Research Project (No. 20230088).
Received  2022-10-17
Accepted  2023-02-23
DOI: 10.12015/issn.1674-8034.2023.03.020
Cite this article as: LI J F, WANG Y J, ZHANG X S, et al. Study of the value of MR T2 mapping in the evaluation of peripheral muscle changes in knee osteoarthritis[J]. Chin J Magn Reson Imaging, 2023, 14(3): 117-121, 133. DOI:10.12015/issn.1674-8034.2023.03.020.

ZHANG M J. Effect of knee physiological anatomy environment on knee biomechanical properties[J]. Chin J Tissue Eng Res, 2012, 16(26): 4903-4907. DOI: 10.3969/j.issn.1673-8225.2012.26.030.
WADA O, KURITA N, KAMITANI T, et al. Influence of the severity of knee osteoarthritis on the association between leg muscle mass and quadriceps strength: the SPSS-OK study[J]. Clin Rheumatol, 2019, 38(3): 719-725. DOI: 10.1007/s10067-018-4337-2.
PETERFY C G, GUERMAZI A, ZAIM S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis[J]. Osteoarthritis Cartilage, 2004, 12(3): 177-190. DOI: 10.1016/j.joca.2003.11.003.
ZHANG R X, YU H, ZHANG P, et al. Analysis of the characteristics of MRI T 2 value changes of the muscles around the knee joint before and after the race in amateur marathon runners based on T 2 mapping[J]. Natl Med J China, 2022, 102(9): 648-653. DOI: 10.3760/cma.j.cn112137-20210626-01448.
PENG F, XU H Y, SONG Y, et al. Longitudinal study of multi-parameter quantitative magnetic resonance imaging in Duchenne muscular dystrophy: hyperresponsiveness of gluteus maximus and detection of subclinical disease progression in functionally stable patients[J]. J Neurol, 2023, 270(3): 1439-1451. DOI: 10.1007/s00415-022-11470-8.
YIN L, XIE Z Y, XU H Y, et al. T2 mapping and fat quantification of thigh muscles in children with Duchenne muscular dystrophy[J]. Curr Med Sci, 2019, 39(1): 138-145. DOI: 10.1007/s11596-019-2012-8.
HUANG R B, YANG H W, CHEN L J, et al. T2 mapping and fat quantification of lumbar paraspinal muscle in ankylosing spondylitis: a case control study[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 614 [2023-02-16]. DOI: 10.1186/s12891-022-05570-9.
HUANG Y L, ZHOU J L, JIANG Y M, et al. Assessment of lumbar paraspinal muscle activation using fMRI BOLD imaging and T2 mapping[J]. Quant Imaging Med Surg, 2020, 10(1): 106-115. DOI: 10.21037/qims.2019.10.20.
MONTE J R, HOOIJMANS M T, FROELING M, et al. Diffusion tensor imaging and quantitative T2 mapping to monitor muscle recovery following hamstring injury[J/OL]. NMR Biomed, 2023: e4902 [2023-02-16]. DOI: 10.1002/nbm.4902.
WANG F D, ZHOU S, HOU B, et al. Assessment of idiopathic inflammatory myopathy using a deep learning method for muscle T2 mapping segmentation[J]. Eur Radiol, 2022: 1-8. DOI: 10.1007/s00330-022-09254-9.
IKUTA F, TAKAHASHI K, HASHIMOTO S, et al. Effect of physical therapy on early knee osteoarthritis with medial meniscal posterior tear assessed by MRI T2 mapping and 3D-to-2D registration technique: a prospective intervention study[J]. Mod Rheumatol, 2020, 30(4): 738-747. DOI: 10.1080/14397595.2019.1646193.
SHI L, WANG K X, YU J H, et al. Relationship between magnetic resonance T2-mapping and matrix metalloproteinase 1, 3 in knee osteoarthritis[J]. Indian J Orthop, 2021, 55(4): 974-982. DOI: 10.1007/s43465-020-00293-2.
YANG Z J, XIE C, OU S W, et al. Cutoff points of T1 rho/T2 mapping relaxation times distinguishing early-stage and advanced osteoarthritis[J]. Arch Med Sci, 2022, 18(4): 1004-1015. DOI: 10.5114/aoms/140714.
HAYASHI S, NAKASA T, MATSUOKA Y, et al. Evaluation of the degenerative pattern of PCL in osteoarthritis patients using UTE-T2 mapping[J]. Asia Pac J Sports Med Arthrosc Rehabil Technol, 2021, 24: 35-40. DOI: 10.1016/j.asmart.2021.01.004.
RANMUTHU C D S, MACKAY J W, CROWE V A, et al. Quantitative analysis of the ACL and PCL using T1rho and T2 relaxation time mapping: an exploratory, cross-sectional comparison between OA and healthy control knees[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 916 [2023-02-16]. DOI: 10.1186/s12891-021-04755-y.
HUBER F A, DEL GRANDE F, RIZZO S, et al. MRI in the assessment of adipose tissues and muscle composition: how to use it[J]. Quant Imaging Med Surg, 2020, 10(8): 1636-1649. DOI: 10.21037/qims.2020.02.06.
FINK B, EGL M, SINGER J, et al. Morphologic changes in the vastus medialis muscle in patients with osteoarthritis of the knee[J]. Arthritis Rheum, 2007, 56(11): 3626-3633. DOI: 10.1002/art.22960.
HATAKENAKA M, SOEDA H, OKAFUJI T, et al. Steroid myopathy: evaluation of fiber atrophy with T2 relaxation time: rabbit and human study[J]. Radiology, 2006, 238(2): 650-657. DOI: 10.1148/radiol.2381041720.
PSATHA M, WU Z Q, GAMMIE F, et al. Age-related changes in the effects of strength training on lower leg muscles in healthy individuals measured using MRI[J/OL]. BMJ Open Sport Exerc Med, 2017, 3(1): e000249 [2023-02-16]. DOI: 10.1136/bmjsem-2017-000249.
YAMAUCHI K, KATO C, KATO T. Characteristics of individual thigh muscles including cross-sectional area and adipose tissue content measured by magnetic resonance imaging in knee osteoarthritis: a cross-sectional study[J]. Rheumatol Int, 2019, 39(4): 679-687. DOI: 10.1007/s00296-019-04247-2.
RAYNAULD J P, PELLETIER J P, ROUBILLE C, et al. Magnetic resonance imaging-assessed vastus medialis muscle fat content and risk for knee osteoarthritis progression: relevance from a clinical trial[J]. Arthritis Care Res (Hoboken), 2015, 67(10): 1406-1415. DOI: 10.1002/acr.22590.
WORLICEK M, MOSER B, MADERBACHER G, et al. The influence of varus and valgus deviation on patellar kinematics in healthy knees: an exploratory cadaver study[J]. Knee, 2017, 24(4): 711-717. DOI: 10.1016/j.knee.2017.04.009.
ELIAS J J, KILAMBI S, GOERKE D R, et al. Improving vastus medialis obliquus function reduces pressure applied to lateral patellofemoral cartilage[J]. J Orthop Res, 2009, 27(5): 578-583. DOI: 10.1002/jor.20791.
CARLIER P G. Global T2 versus water T2 in NMR imaging of fatty infiltrated muscles: different methodology, different information and different implications[J]. Neuromuscul Disord, 2014, 24(5): 390-392. DOI: 10.1016/j.nmd.2014.02.009.
IIJIMA Y, MATSUKI K, HOSHIKA S, et al. Relationship between postoperative retear and preoperative fatty degeneration in large and massive rotator cuff tears: quantitative analysis using T2 mapping[J]. J Shoulder Elbow Surg, 2019, 28(8): 1562-1567. DOI: 10.1016/j.jse.2019.04.036.
MATSUKI K, WATANABE A, OCHIAI S, et al. Quantitative evaluation of fatty degeneration of the supraspinatus and infraspinatus muscles using T2 mapping[J]. J Shoulder Elbow Surg, 2014, 23(5): 636-641. DOI: 10.1016/j.jse.2014.01.019.
KUMAR D, KARAMPINOS D C, MACLEOD T D, et al. Quadriceps intramuscular fat fraction rather than muscle size is associated with knee osteoarthritis[J]. Osteoarthritis Cartilage, 2014, 22(2): 226-234. DOI: 10.1016/j.joca.2013.12.005.
KUMAR D, LINK T M, JAFARZADEH S R, et al. Association of quadriceps adiposity with an increase in knee cartilage, Meniscus, or bone marrow lesions over three years[J]. Arthritis Care Res (Hoboken), 2021, 73(8): 1134-1139. DOI: 10.1002/acr.24232.
TEICHTAHL A J, WLUKA A E, WANG Y, et al. Vastus medialis fat infiltration-a modifiable determinant of knee cartilage loss[J]. Osteoarthritis Cartilage, 2015, 23(12): 2150-2157. DOI: 10.1016/j.joca.2015.06.016.
DAVISON M J, MALY M R, ADACHI J D, et al. Relationships between fatty infiltration in the thigh and calf in women with knee osteoarthritis[J]. Aging Clin Exp Res, 2017, 29(2): 291-299. DOI: 10.1007/s40520-016-0556-z.
SAKURAI Y, TAMURA Y, TAKENO K, et al. Association of T2 relaxation time determined by magnetic resonance imaging and intramyocellular lipid content of the soleus muscle in healthy subjects[J]. J Diabetes Investig, 2011, 2(5): 356-358. DOI: 10.1111/j.2040-1124.2011.00108.x.
HAMRICK M W, MCGEE-LAWRENCE M E, FRECHETTE D M. Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity[J/OL]. Front Endocrinol (Lausanne), 2016, 7: 69 [2023-02-16]. DOI: 10.3389/fendo.2016.00069.
GUEUGNEAU M, COUDY-GANDILHON C, THÉRON L, et al. Skeletal muscle lipid content and oxidative activity in relation to muscle fiber type in aging and metabolic syndrome[J]. J Gerontol A Biol Sci Med Sci, 2015, 70(5): 566-576. DOI: 10.1093/gerona/glu086.

PREV Evaluation of fetal spinal anatomy and vertebral deformity with 3 T magnetic resonance three-dimensional T2-weighted fast field echo sequence
NEXT Mediating effect of synovitis in the association between BMI and the risk of total knee replacement

Tel & Fax: +8610-67113815    E-mail: