Share this content in WeChat
Progress in assessment of unstable state risk of unruptured cerebral aneurysms by multimodal MRI
FU Qichang  ZHANG Yong  LIU Chao  GUAN Sheng  CHENG Jingliang 

Cite this article as: FU Q C, ZHANG Y, LIU C, et al. Progress in assessment of unstable state risk of unruptured cerebral aneurysms by multimodal MRI[J]. Chin J Magn Reson Imaging, 2023, 14(2): 163-167. DOI:10.12015/issn.1674-8034.2023.02.029.

[Abstract] MRI plays a vital role in the individualized evaluation of unstable state risk of unruptured intracranial aneurysms (UIAs). The initial step in using MRI in UIAs is to show the morphological traits. The maturity of MR angiography (MRA) effectively fixed this issue. With the advancement of science and technology, MRI can now provide functional information on UIAs. MR blood flow imaging may now reveal UIAs hemodynamic characteristics, and high-resolution MRI may show pathological features of the aneurysm wall. In recent years, artificial intelligence (AI) has had the potential to satisfy physicians' demands for greater precision in the tailored assessment of unstable state risk in UIAs. The author will go over the importance of multi-mode MRI in assessing the risk of aneurysm instability from UIAs morphology, aneurysm wall pathology, hemodynamics and AI to serve as a reference for the research on precise risk stratification of UIAs.
[Keywords] unruptured intracranial aneurysms;magnetic resonance imaging;magnetic resonance angiography;artificial intelligence;risk evaluation

FU Qichang1   ZHANG Yong1   LIU Chao2   GUAN Sheng2   CHENG Jingliang1*  

1 Department of Magnetic Resonance, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

2 Department of Interventional Neuroradiology, the First Affiliated Hospital, Zhengzhou 450052, China

*Correspondence to: Cheng JL, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82202105).
Received  2022-10-17
Accepted  2023-02-13
DOI: 10.12015/issn.1674-8034.2023.02.029
Cite this article as: FU Q C, ZHANG Y, LIU C, et al. Progress in assessment of unstable state risk of unruptured cerebral aneurysms by multimodal MRI[J]. Chin J Magn Reson Imaging, 2023, 14(2): 163-167. DOI:10.12015/issn.1674-8034.2023.02.029.

Chinese Federation of Interventional Clinical Neurosciences (CFITN), China Intracranial Aneurysm Project (CIAP). Chinese guidelines for diagnosis and treatment of unruptured intracranial aneurysm 2021[J]. Chin J Cerebrovasc Dis, 2021, 18(9): 634-664. DOI: 10.3969/j.issn.1672-5921.2021.09.008.
ETMINAN N, RINKEL G J. Unruptured intracranial aneurysms: development, rupture and preventive management[J]. Nat Rev Neurol, 2016, 12(12): 699-713. DOI: 10.1038/nrneurol.2016.150.
LIU Q, JIANG P, JIANG Y, et al. Prediction of Aneurysm Stability Using a Machine Learning Model Based on PyRadiomics-Derived Morphological Features[J]. Stroke, 2019, 50(9): 2314-2321. DOI: 10.1161/STROKEAHA.119.025777.
MOREL S, BIJLENGA P, KWAK B R. Intracranial aneurysm wall (in)stability-current state of knowledge and clinical perspectives[J]. Neurosurg Rev, 2022, 45(2): 1233-1253. DOI: 10.1007/s10143-021-01672-5.
ZHU W, LI W, TIAN Z, et al. Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features[J]. Transl Stroke Res, 2020, 11(6): 1287-1295. DOI: 10.1007/s12975-020-00811-2.
HACKENBERG K, HÄNGGI D, ETMINAN N. Unruptured Intracranial Aneurysms[J]. Stroke, 2018, 49(9): 2268-2275. DOI: 10.1161/STROKEAHA.118.021030.
Chinese Federation of Interventional Clinical Neurosciences (CFITN), China Intracranial Aneurysm Project (CIAP). Expert consensus on imaging interpretation of intracranial aneurysms[J]. Chin J Cerebrovasc Dis, 2021, 18(7): 492-504. DOI: 10.3969/j.issn.1672-5921.2021.07.011.
FLANDERS A E. Machine Learning Detection of Intracranial Aneurysms-Will It Play in Peoria?[J/OL]. Radiology, 2018: 182225 [2022-10-17]. DOI: 10.1148/radiol.2018182225.
HAIFENG L, YONGSHENG X, YANGQIN X, et al. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis[J]. Neuroradiology, 2017, 59(11): 1083-1092. DOI: 10.1007/s00234-017-1905-0.
WANG S J, LI Y H, LI M H. The clinical application of magnetic resonance angiography in diagnosing intracranial aneurysms[J]. J Intervent Radiol, 2014, 23(9): 826-830. DOI: 10.3969/j.issn.1008-794X.2014.09.022.
SHANG S, WANG L, YE J, et al. Can Hybrid Arterial Spin Labeling‐Tagged Zero‐Echo‐Time Magnetic Resonance Angiography Be an Effective Candidate in the Evaluation of Intracranial Artery Diseases? A Clinical Feasibility Study[J]. J Magn Reson Imaging, 2021, 54(3): 938-949. DOI: 10.1002/jmri.27629.
GREVING J P, WERMER M J, BROWN R J, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies[J]. Lancet Neurol, 2014, 13(1): 59-66. DOI: 10.1016/S1474-4422(13)70263-1.
BACKES D, RINKEL G J E, GREVING J P, et al. ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms[J]. Neurology, 2017, 88(17): 1600-1606. DOI: 10.1212/WNL.0000000000003865.
KASHIWAZAKI D, KURODA S. Size ratio can highly predict rupture risk in intracranial small (<5 mm) aneurysms[J]. Stroke, 2013, 44(8): 2169-2173. DOI: 10.1161/STROKEAHA.113.001138.
JING L, FAN J, WANG Y, et al. Morphologic and Hemodynamic Analysis in the Patients with Multiple Intracranial Aneurysms: Ruptured versus Unruptured[J/OL]. PLoS One, 2015, 10(7): e132494 [2022-10-17]. DOI: 10.1371/journal.pone.0132494.
SONOBE M, YAMAZAKI T, YONEKURA M, et al. Small Unruptured Intracranial Aneurysm Verification Study: SUAVe Study, Japan[J]. Stroke, 2010, 41(9): 1969-1977. DOI: 10.1161/STROKEAHA.110.585059.
WANG Z H, GAO Y. Research progress of high resolution magnetic resonance angiography in ischemic stroke[J]. Chin J Magn Reson Imag, 2023, 14(1): 156-160, 165. DOI: 10.12015/issn.1674-8034.2023.01.029.
Group MR, Radiology Branch of Chinese Medical Association. Expert consensus on techniques and application of intracranial MR vessel wall imaging in China[J]. Chin J Radiol, 2019, 53(12): 1045-1059. DOI: 10.3760/cma.j.issn.1005-1201.2019.12.006.
ZHU M Y, LI C, CHEN Y Z, et al. Advances in intracranial aneurysms by high resolution magnetic resonance vessel wall imaging[J]. Chin J Magn Reson Imag, 2018, 9(8): 631-636. DOI: 10.12015/issn.1674-8034.2018.08.014.
CANTRELL C G, VAKIL P, JEONG Y, et al. Diffusion-compensated tofts model suggests contrast leakage through aneurysm wall[J]. Magn Reson Med, 2017, 78(6): 2388-2398. DOI: 10.1002/mrm.26607.
SHAMS S, MARTOLA J, CAVALLIN L, et al. SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study[J]. AJNR Am J Neuroradiol, 2015, 36(6): 1089-1095. DOI: 10.3174/ajnr.A4248.
KEE Y, Liu Z, Zhou LD, et al. Quantitative Susceptibility Mapping (QSM) Algorithms: Mathematical Rationale and Computational Implementations[J]. IEEE Trans Biomed Eng, 2017, 64(11): 2531-2545. DOI: 10.1109/TBME.2017.2749298.
KLEINLOOG R, KORKMAZ E, ZWANENBURG J J, et al. Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study[J]. Neurosurgery, 2014, 75(6): 614-622. DOI: 10.1227/NEU.0000000000000559.
FU Q C, CHENG J L, GUAN S, et al. Progress in assessment of intracranial aneurysms by using high resolution MRI[J]. Chin J Radiol, 2020, 54(4): 372-375. DOI: 10.3760/cma.j.cn112149-20190414-00158.
EDJLALI M, GUÉDON A, HASSEN W BEN, et al. Circumferential Thick Enhancement at Vessel Wall MRI Has High Specificity for Intracranial Aneurysm Instability[J]. Radiology, 2018, 289(1): 181-187. DOI: 10.1148/radiol.2018172879.
WANG J N, ZHU Y Q. Research progress in the role of inflammation in the rupture of intracranial aneurysms[J]. J Intervent Radiol, 2021, 30(4): 423-428. DOI: 10.3969/j.issn.1008-794X.2021.03.024.
QIN J B, ZHU M, LIU G F. Research progress of inflammatory reaction mechanism and evaluation of high-resolution magnetic resonance and potential therapeutic drugs of unruptured intracranial aneurysms[J]. Chin J Cerebrovasc Dis, 2021, 18(9): 628-633. DOI: 10.3969/j.issn.1672-5921.2021.09.007.
FU Q C, WANG Y T, ZHANG Y, et al. Qualitative and Quantitative Wall Enhancement on Magnetic Resonance Imaging Is Associated With Symptoms of Unruptured Intracranial Aneurysms[J]. Stroke (1970), 2021, 52(1): 213-222. DOI: 10.1161/STROKEAHA.120.029685.
FU Q C, GUAN S, LIU C, et al. Clinical Significance of Circumferential Aneurysmal Wall Enhancement in Symptomatic Patients with Unruptured Intracranial Aneurysms: a High-resolution MRI Study[J]. Clin Neuroradiol, 2018, 28(4): 509-514. DOI: 10.1007/s00062-017-0598-4.
QI H, LIU X, LIU P, et al. Complementary Roles of Dynamic Contrast-Enhanced MR Imaging and Postcontrast Vessel Wall Imaging in Detecting High-Risk Intracranial Aneurysms[J/OL]. AJNR Am J Neuroradiol, 2019 [2022-10-17]. DOI: 10.3174/ajnr.A5983.
WANG Y J, SUN J, LI R, et al. Increased aneurysm wall permeability colocalized with low wall shear stress in unruptured saccular intracranial aneurysm[J]. J Neurol, 2022, 269(5): 2715-2719. DOI: 10.1007/s00415-021-10869-z.
NAKAGAWA D, CUSHING C, NAGAHAMA Y, et al. Quantitative Susceptibility Mapping as a Possible Tool to Radiographically Diagnose Sentinel Headache Associated with Intracranial Aneurysm: Case Report[J]. World Neurosurg, 2017, 103: 951-954. DOI: 10.1016/j.wneu.2017.04.151.
NAKAGAWA D, KUDO K, AWE O, et al. Detection of microbleeds associated with sentinel headache using MRI quantitative susceptibility mapping: pilot study[J]. J Neurosurg, 2019, 130(4): 1391-1397. DOI: 10.3171/2018.2.JNS1884.
MATSUSHIGE T, CHEN B, RINGELSTEIN A, et al. Giant Intracranial Aneurysms at 7T MRI[J]. AJNR Am J Neuroradiol, 2016, 37(4): 636-641. DOI: 10.3174/ajnr.A4569.
ISHII D, NAKAGAWA D, ZANATY M, et al. Quantitative Susceptibility Mapping and Vessel Wall Imaging as Screening Tools to Detect Microbleed in Sentinel Headache[J/OL]. J Clin Med, 2020, 9(4): 979 [2022-10-17]. DOI: 10.3390/jcm9040979.
YOUN S W, LEE J. From 2D to 4D Phase-Contrast MRI in the Neurovascular System: Will It Be a Quantum Jump or a Fancy Decoration?[J]. J Magn Reson Imaging, 2022, 55(2): 347-372. DOI: 10.1002/jmri.27430.
FUTAMI K, KITABAYASHI T, SANO H, et al. Inflow Jet Patterns of Unruptured Cerebral Aneurysms Based on the Flow Velocity in the Parent Artery: Evaluation Using 4D Flow MRI[J]. AJNR Am J Neuroradiol, 2016, 37(7): 1318-1323. DOI: 10.3174/ajnr.A4704.
FUTAMI K, UNO T, MISAKI K, et al. Identification of Vortex Cores in Cerebral Aneurysms on 4D Flow MRI[J]. AJNR Am J Neuroradiol, 2019, 40(12): 2111-2116. DOI: 10.3174/ajnr.A6322.
ZOU Y P, XU F. Research progress of wall shear stress and intracranial aneurysms[J]. J Clin Neurosurg, 2021, 18(1): 117-120. DOI: 10.3969/j.issn.1672-7770.2021.01.027.
ZHANG M Q, PENG F, TONG X, et al. Associations between haemodynamics and wall enhancement of intracranial aneurysm[J]. Stroke Vasc Neurol, 2021, 6(3): 467-475. DOI: 10.1136/svn-2020-000636.
XIAO W, QI T, HE S, et al. Low Wall Shear Stress Is Associated with Local Aneurysm Wall Enhancement on High-Resolution MR Vessel Wall Imaging[J]. AJNR Am J Neuroradiol, 2018, 39(11): 2082-2087. DOI: 10.3174/ajnr.A5806.
ARIMURA H, LI Q, KOROGI Y, et al. Automated computerized scheme for detection of unruptured intracranial aneurysms in three-dimensional magnetic resonance angiography1[J]. Acad Radiol, 2004, 11(10): 1093-1104. DOI: 10.1016/j.acra.2004.07.011.
ARIMURA H, LI G, KOROGI Y, et al. Computerized detection of intracranial aneurysms for three-dimensional MR angiography: Feature extraction of small protrusions based on a shape-based difference image technique[J]. Med Phys, 2006, 33(2): 394-401. DOI: 10.1118/1.2163389.
NAKAO T, HANAOKA S, NOMURA Y, et al. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography[J]. J Magn Reson Imaging, 2018, 47(4): 948-953. DOI: 10.1002/jmri.25842.
KIM H C, RHIM J K, AHN J H, et al. Machine Learning Application for Rupture Risk Assessment in Small-Sized Intracranial Aneurysm[J/OL]. J Clin Med, 2019, 8(5): 683 [2022-10-17]. DOI: 10.3390/jcm8050683.
DETMER F J, LÜCKEHE D, MUT F, et al. Comparison of statistical learning approaches for cerebral aneurysm rupture assessment[J]. Int J Comput Assist Radiol Surg, 2020, 15(1): 141-150. DOI: 10.1007/s11548-019-02065-2.
CHEN G Z, LU M J, SHI Z, et al. Development and validation of machine learning prediction model based on computed tomography angiography–derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study[J]. Eur Radiol, 2020, 30(9): 5170-5182. DOI: 10.1007/s00330-020-06886-7.
OU C B, LIU J H, QIAN Y, et al. Rupture Risk Assessment for Cerebral Aneurysm Using Interpretable Machine Learning on Multidimensional Data[J/OL]. Front Neurol, 2020, 11: 570181 [2022-10-17]. DOI: 10.3389/fneur.2020.570181.
SHI Z, CHEN GZ, MAO L, et al. Machine Learning–Based Prediction of Small Intracranial Aneurysm Rupture Status Using CTA-Derived Hemodynamics: A Multicenter Study[J]. AJNR Am J Neuroradiol, 2021, 42(4): 648-654. DOI: 10.3174/ajnr.A7034.
SHI Z, ZHANG L J. Artificial intelligence in cerebrovascular disease imaging[J]. Chin J Radiol, 2021, 55(8): 793-798. DOI: 10.3760/cma.j.cn112149-20210616-00564.

PREV Research progress in MRI of microbiota‐gut‐brain axis dysbiosis
NEXT Research progress in predicting molecular typing of lower grade glioma by functional magnetic resonance imaging

Tel & Fax: +8610-67113815    E-mail: