Share this content in WeChat
Research advances in MRI for cognitive impairment in children with self-limited epilepsy with centrotemporal spikes
YIN Yu  LIU Heng 

Cite this article as: YIN Y, LIU H. Research advances in MRI for cognitive impairment in children with self-limited epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2023, 14(2): 153-157. DOI:10.12015/issn.1674-8034.2023.02.027.

[Abstract] Self-limited epilepsy with centrotemporal spikes (SLECTS) is the most common childhood focal epilepsy syndrome associated with a series of cognitive and behavioral deficits. Its pathogenesis is still unclear and clinical interventions are controversial. With advances in neuroimaging technology and the widespread use of novel MRI techniques, structural and functional brain alterations in SLECTS and their correlation with cognitive impairment have become a hot research topic today. The transdisciplinary model of electroencephalogram-functional MRI (EEG-fMRI) technology combined with genomics and artificial intelligence will be a major direction for future SLECTS research, which is expected to further elucidate the neuropathological mechanisms underlying the occurrence of cognitive dysfunction in SLECTS and provide a more definitive clinical basis for early diagnosis and individualized treatment. Therefore, this article reviews the current status and potential weaknesses of MRI research in SLECTS to provide a reference for future research.
[Keywords] self-limited epilepsy with centrotemporal spikes;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging;diffusion tensor imaging

YIN Yu   LIU Heng*  

Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China

*Correspondence to: Liu H, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Young Outstanding Scientific and Technological Talent Training Program of Guizhou Province (No. Qian Ke He Pingtai Rencai〔2021〕5620); Graduate Student Scientific Research Innovation Projects in Guizhou Province (No. Qian Jiao He YJSKYJJ〔2021〕184).
Received  2022-09-15
Accepted  2023-02-01
DOI: 10.12015/issn.1674-8034.2023.02.027
Cite this article as: YIN Y, LIU H. Research advances in MRI for cognitive impairment in children with self-limited epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2023, 14(2): 153-157. DOI:10.12015/issn.1674-8034.2023.02.027.

SPECCHIO N, WIRRELL E C, SCHEFFER I E, et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions[J]. Epilepsia, 2022, 63(6): 1398-1442. DOI: 10.1111/epi.17241.
BAUMER F M, CARDON A L, PORTER B E. Language Dysfunction in Pediatric Epilepsy[J]. J Pediatr, 2018, 194: 13-21. DOI: 10.1016/j.jpeds.2017.10.031.
DRYŻAŁOWSKI P, JÓŹWIAK S, FRANCKIEWICZ M, et al. Benign epilepsy with centrotemporal spikes - Current concepts of diagnosis and treatment[J]. Neurol Neurochir Pol, 2018, 52(6): 677-689. DOI: 10.1016/j.pjnns.2018.08.010.
DUAN Y, LENG X, LIU C, et al. The Correlation of ELP4-PAX6 With Rolandic Spike Sources in Idiopathic Rolandic Epilepsy Syndromes[J/OL]. Front Neurol, 2021, 12: 643964 [2022-12-09]. DOI: 10.3389/fneur.2021.643964.
TÖRNHAGE M, SANDBERG E N, LUNDBERG S. Oromotor, word retrieval, and dichotic listening performance in young adults with previous Rolandic epilepsy[J]. Eur J Paediatr Neurol, 2020, 25: 139-144. DOI: 10.1016/j.ejpn.2019.11.009.
ZANABONI M P, VARESIO C, PASCA L, et al. Systematic review of executive functions in children with self-limited epilepsy with centrotemporal spikes[J/OL]. Epilepsy Behav, 2021, 123: 108254 [2022-12-09]. DOI: 10.1016/j.yebeh.2021.108254.
ARICÒ M, ARIGLIANI E, GIANNOTTI F, et al. ADHD and ADHD-related neural networks in benign epilepsy with centrotemporal spikes: A systematic review[J/OL]. Epilepsy Behav, 2020, 112: 107448 [2022-12-09]. DOI: 10.1016/j.yebeh.2020.107448.
LIMA E M, RZEZAK P, MONTENEGRO M A, et al. Social cognition in childhood epilepsy with centrotemporal spikes[J]. Seizure, 2020, 78: 102-108. DOI: 10.1016/j.seizure.2020.03.014.
HUR Y J. Guideline for advanced neuroimaging in pediatric epilepsy[J]. Clinical and experimental pediatrics, 2020, 63(3): 100-101. DOI: 10.3345/cep.2019.01403.
GOTO M, ABE O, HAGIWARA A, et al. Advantages of Using Both Voxel- and Surface-based Morphometry in Cortical Morphology Analysis: A Review of Various Applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.
XU Y, XU Q, ZHANG Q, et al. Influence of epileptogenic region on brain structural changes in Rolandic epilepsy[J]. Brain Imaging Behav, 2022, 16(1): 424-434. DOI: 10.1007/s11682-021-00517-5.
ZHANG Q, HE Y, QU T, et al. Delayed brain development of Rolandic epilepsy profiled by deep learning-based neuroanatomic imaging[J]. Eur Radiol, 2021, 31(12): 9628-9637. DOI: 10.1007/s00330-021-08048-9.
YIN Y, WANG F, MA Y, et al. Structural and functional changes in drug-naïve benign childhood epilepsy with centrotemporal spikes and their associated gene expression profiles[J/OL]. Cereb Cortex, 2022: bhac458 [2022-12-09]. DOI: 10.1093/cercor/bhac458.
VIJAYAKUMAR N, YOUSSEF G J, ALLEN N B, et al. A longitudinal analysis of puberty-related cortical development[J/OL]. Neuroimage, 2021, 228: 117684 [2022-12-09]. DOI: 10.1016/j.neuroimage.2020.117684.
LI Z, ZHANG J, WANG F, et al. Surface-based morphometry study of the brain in benign childhood epilepsy with centrotemporal spikes[J/OL]. Ann Transl Med, 2020, 8(18): 1150 [2022-12-09]. DOI: 10.21037/atm-20-5845.
JIANG L, ZHANG T, LV F, et al. Structural Covariance Network of Cortical Gyrification in Benign Childhood Epilepsy with Centrotemporal Spikes[J/OL]. Front Neurol, 2018, 9: 10 [2022-12-09]. DOI: 10.3389/fneur.2018.00010.
XU Y, YANG F, HU Z, et al. Anti-seizure medication correlated changes of cortical morphology in childhood epilepsy with centrotemporal spikes[J/OL]. Epilepsy Res, 2021, 173: 106621 [2022-12-09]. DOI: 10.1016/j.eplepsyres.2021.106621.
THORN E L, OSTROWSKI L M, CHINAPPEN D M, et al. Persistent abnormalities in Rolandic thalamocortical white matter circuits in childhood epilepsy with centrotemporal spikes[J]. Epilepsia, 2020, 61(11): 2500-2508. DOI: 10.1111/epi.16681.
PODWALSKI P, SZCZYGIEŁ K, TYBURSKI E, et al. Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis[J]. Pharmacol Rep, 2021, 73(1): 43-56. DOI: 10.1007/s43440-020-00177-0.
OSTROWSKI L M, SONG D Y, THORN E L, et al. Dysmature superficial white matter microstructure in developmental focal epilepsy[J/OL]. Brain Commun, 2019, 1(1): fcz002 [2022-12-09]. DOI: 10.1093/braincomms/fcz002.
KIM H H, CHUNG G H, PARK S H, et al. Language-Related White-Matter-Tract Deficits in Children with Benign Epilepsy with Centrotemporal Spikes: A Retrospective Study[J]. J Clin Neurol, 2019, 15(4): 502-510. DOI: 10.3988/jcn.2019.15.4.502.
SHU M, YU C, SHI Q, et al. Alterations in white matter integrity and asymmetry in patients with benign childhood epilepsy with centrotemporal spikes and childhood absence epilepsy: An automated fiber quantification tractography study[J/OL]. Epilepsy Behav, 2021, 123: 108235 [2022-12-09]. DOI: 10.1016/j.yebeh.2021.108235.
VANNEST J, MALONEY T C, TENNEY J R, et al. Changes in functional organization and functional connectivity during story listening in children with benign childhood epilepsy with centro-temporal spikes[J]. Brain Lang, 2019, 193: 10-17. DOI: 10.1016/j.bandl.2017.01.009.
WU Y, FANG F, LI K, et al. Functional connectivity differences in speech production networks in Chinese children with Rolandic epilepsy[J/OL]. Epilepsy Behav, 2022: 108819 [2022-12-09]. DOI: 10.1016/j.yebeh.2022.108819.
CIUMAS C, LAURENT A, SAIGNAVONGS M, et al. Behavioral and fMRI responses to fearful faces are altered in benign childhood epilepsy with centrotemporal spikes (BCECTS)[J]. Epilepsia, 2017, 58(10): 1716-1727. DOI: 10.1111/epi.13858.
CIUMAS C, MONTAVONT A, ILSKI F, et al. Neural correlates of verbal working memory in children with epilepsy with centro-temporal spikes[J/OL]. Neuroimage Clin, 2020, 28: 102392 [2022-12-09]. DOI: 10.1016/j.nicl.2020.102392.
DAI X J, LIU H, YANG Y, et al. Brain network excitatory/inhibitory imbalance is a biomarker for drug-naive Rolandic epilepsy: A radiomics strategy[J]. Epilepsia, 2021, 62(10): 2426-2438. DOI: 10.1111/epi.17011.
HE W, LIU H, LIU Z, et al. Electrical status epilepticus in sleep affects intrinsically connected networks in patients with benign childhood epilepsy with centrotemporal spikes[J/OL]. Epilepsy Behav, 2020, 106: 107032 [2022-12-09]. DOI: 10.1016/j.yebeh.2020.107032.
QU B Q, YU Q, YAN X X, et al. Study of the cognition in patients with benign epilepsy of childhood with centrotemporal spikes by using the ReHo, ALFF, fALFF of RS-fMRI[J]. Journal of Epilepsy, 2018, 4(6): 473-479. DOI: 10.7507/2096-0247.20180076.
XU K, WANG F, GENG B, et al. Abnormal percent amplitude of fluctuation and functional connectivity within and between networks in benign epilepsy with centrotemporal spikes[J/OL]. Epilepsy Res, 2022, 185: 106989 [2022-12-09]. DOI: 10.1016/j.eplepsyres.2022.106989.
XIAO F, LI L, AN D, et al. Altered attention networks in benign childhood epilepsy with centrotemporal spikes (BECTS): A resting-state fMRI study[J]. Epilepsy Behav, 2015, 45: 234-241. DOI: 10.1016/j.yebeh.2015.01.016.
MCGINNITY C J, SMITH A B, YAAKUB S N, et al. Decreased functional connectivity within a language subnetwork in benign epilepsy with centrotemporal spikes[J]. Epilepsia open, 2017, 2(2): 214-225. DOI: 10.1002/epi4.12051.
CHEN L C, LI X, SHEN L. Self-limited focal epilepsy decreased regional brain activity in sensorimotor areas[J]. Acta Neurol Scand, 2021, 143(2): 188-194. DOI: 10.1111/ane.13350.
LUO C, YANG F, DENG J, et al. Altered functional and effective connectivity in anticorrelated intrinsic networks in children with benign childhood epilepsy with centrotemporal spikes[J/OL]. Medicine, 2016, 95(24): e3831 [2022-12-09]. DOI: 10.1097/MD.0000000000003831.
KANEMURA H, SANO F, OHYAMA T, et al. Efficacy of levetiracetam for reducing rolandic discharges in comparison with carbamazepine and valproate sodium in rolandic epilepsy[J]. Seizure, 2018, 62: 79-83. DOI: 10.1016/j.seizure.2018.10.002.
LIU W T, YAN X X, CHENG D Z, et al. Oxcarbazepine monotherapy in children with benign epilepsy with centrotemporal spikes improves quality of life[J]. Chinese Medical Journal, 2020, 133(14): 1649-1654. DOI: 10.1097/CM9.0000000000000925.
JIANG Y, SONG L, LI X, et al. Dysfunctional white-matter networks in medicated and unmedicated benign epilepsy with centrotemporal spikes[J]. Hum Brain Mapp, 2019, 40(10): 3113-3124. DOI: 10.1002/hbm.24584.
BESAG F M C, VASEY M J. Neurocognitive Effects of Antiseizure Medications in Children and Adolescents with Epilepsy[J]. Paediatric drugs, 2021, 23(3): 253-286. DOI: 10.1007/s40272-021-00448-0.
ZENG H, RAMOS C G, NAIR V A, et al. Regional homogeneity (ReHo) changes in new onset versus chronic benign epilepsy of childhood with centrotemporal spikes (BECTS): A resting state fMRI study[J]. Epilepsy Res, 2015, 116: 79-85. DOI: 10.1016/j.eplepsyres.2015.06.017.
IKEMOTO S, VON ELLENRIEDER N, GOTMAN J. Electroencephalography-functional magnetic resonance imaging of epileptiform discharges: Noninvasive investigation of the whole brain[J]. Epilepsia, 2022, 63(11): 2725-2744. DOI: 10.1111/epi.17364.
SHAMSHIRI E A, SHEYBANI L, VULLIEMOZ S. The Role of EEG-fMRI in Studying Cognitive Network Alterations in Epilepsy[J/OL]. Front Neurol, 2019, 10: 1033 [2022-12-09]. DOI: 10.3389/fneur.2019.01033.
JI G J, YU Y, MIAO H H, et al. Decreased Network Efficiency in Benign Epilepsy with Centrotemporal Spikes[J]. Radiology, 2017, 283(1): 186-194. DOI: 10.1148/radiol.2016160422.
ITO Y, MAKI Y, OKAI Y, et al. Involvement of brain structures in childhood epilepsy with centrotemporal spikes[J/OL]. Pediatr Int, 2022, 64(1): e15001 [2022-12-09]. DOI: 10.1111/ped.15001.
DAI X J, YANG Y, WANG Y. Interictal epileptiform discharges changed epilepsy-related brain network architecture in BECTS[J]. Brain Imaging Behav, 2022, 16(2): 909-920. DOI: 10.1007/s11682-021-00566-w.

PREV Research progress of rt-fMRI-NF regulating amygdala activity and improving mood disorders
NEXT Research progress in MRI of microbiota‐gut‐brain axis dysbiosis

Tel & Fax: +8610-67113815    E-mail: