Share:
Share this content in WeChat
X
Technical Article
A multi-parameter water-model based quality control method for magnetic resonance imaging
HAO Fei  HE Qingyuan  CUI Zhe  LIU Zilong  LU Jiabin  ZHANG Heng  XU Meng  XIE Lide 

Cite this article as: HAO F, HE Q Y, CUI Z, et al. A multi-parameter water-model based quality control method for magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(2): 138-144. DOI:10.12015/issn.1674-8034.2023.02.023.


[Abstract] Objective To investigate the use of multiparametric water models for quality control of the quantitative detection capability of MRI.Materials and Methods We designed a multiparametric water model and characterized the proton density (PD), longitudinal and transverse relaxation time (T1 & T2), and apparent diffusion coefficient (ADC) by different structural layers and characteristic solutions built into the layers in the multiparametric water model. After setting the value, the grayscale value of the target area of MRI image was extracted, multi-domain information was obtained, and the quality control calibration algorithm was established by data fitting.Results Firstly, effective quality control (QC) was conducted for the stability of the quantitative values of the MRI, and then the grey-scale convolution + BP (back propagation) neural network algorithm was used to analyze the QC data, which could improve its accuracy.Conclusions This study has developed a multi-parameter water model for the quality control of functional imaging quantitative techniques, established and standardized a method for evaluating the performance of the equipment traceable to the international unit system, and constructed the basis for the quality control of magnetic resonance equipment in China.
[Keywords] multiparametric water modeling;quality control;magnetic resonance imaging;functional imaging;national standards

HAO Fei1, 2   HE Qingyuan2, 3, 4, 5*   CUI Zhe3   LIU Zilong4, 5, 6   LU Jiabin3, 4   ZHANG Heng1, 2, 4   XU Meng4   XIE Lide1, 4*  

1 Department of Biomedical Engineering, Chengde Medical University, Chengde 067000, China

2 Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China

3 Department of Radiology, Peking University Third Hospital, Beijing 100191, China

4 Peking University Third Hospital, Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Beijing 100191, China

5 National Medical Products Administration Key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing 100191, China

6 National Institute of Metrology, Beijing 100029, China

*Correspondence to: Xie LD, E-mail: xielide65@163.com He QY, E-mail: heqingyuan@bjmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Science and Technology Major Project (No. 2016YFC0103602).
Received  2022-10-22
Accepted  2023-02-01
DOI: 10.12015/issn.1674-8034.2023.02.023
Cite this article as: HAO F, HE Q Y, CUI Z, et al. A multi-parameter water-model based quality control method for magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(2): 138-144. DOI:10.12015/issn.1674-8034.2023.02.023.

[1]
SHAMAYLEH A, AWAD M, FARHAT J. IoT based predictive maintenance management of medical equipment[J/OL]. J Med Syst, 2020, 44(4): 72 [2022-10-20]. https://link.springer.com/article/10.1007/s10916-020-1534-8. DOI: 10.1007/s10916-020-1534-8.
[2]
GAO J H, LEI H, CHEN Q, et al. Review of development of magnetic resonance imaging[J]. Sci China Life Sci, 2020, 50(11): 1285-1295. DOI: 10.1360/SSV-2020-0164.
[3]
EGBOSIMBA D. Medical devices industry: the problem of clinical evaluation reports[J]. Ann Biol Clin (Paris), 2019, 77(5): 514-516. DOI: 10.1684/abc.2019.1473.
[4]
XU H W, WANG Y, YANG X F, et al. Advances in medical device standard system[J]. Chin J Med Instrum, 2018, 42(1): 49-52. DOI: 10.3969/j.issn.1671-7104.2018.01.013.
[5]
YANG X F, MU R H, FAN Y B, et al. The Current situation and development of medical device testing institutes in China[J]. Expert Rev Med Devices, 2017, 14(4): 263-269. DOI: 10.1080/17434440.2017.1299572.
[6]
HE Q Y, JIAO Q L, JIANG Y Q, et al. Research on edge detection algorithm of T2-weighted of MRI based on improved Canny operator[J]. China Med Equip, 2018, 15(12): 37-40. DOI: 10.3969/J.ISSN.1672-8270.2018.12.009.
[7]
HAN H B. Environment and strategy of independent innovation and development of medical equipment industry in China[J]. Chin J Med Sci Res Manag, 2012, 25(1): 4-9. DOI: 10.3760/cma.j.issn.1006-1924.2012.01.002.
[8]
BRANCATO V, CAVALIERE C, SALVATORE M, et al. Non-Gaussian models of diffusion weighted imaging for detection and characterization of prostate cancer: a systematic review and meta-analysis[J/OL]. Sci Rep, 2019, 9(1): 16837 [2022-05-15]. https://www.nature.com/articles/s41598-019-53350-8. DOI: 10.1038/s41598-019-53350-8.
[9]
LIU Y W, YIN H X, YANG P P, et al. Status and tendency of clinical quality control procedure and regulation for MRI equipment[J]. Chin J Med Imaging Technol, 2017, 33(11): 1615-1619. DOI: 10.13929/j.1003-3289.201706056.
[10]
Ministry of Health of the People's Republic of China. Specification for image quality inspection and evaluation of medical magnetic resonance imaging (MRI) equipment: WS/T 263—2006[S]. Beijing: People's Health Publishing House, 2007.
[11]
State Food and Drug Administration of the People's Republic of China. Magnetic resonance equipment for medical imaging—part 1: determination of essential image quality parameters: YY/T 0482—2010[S]. Beijing: Standards Press of China, 2012.
[12]
ZHAI H Z, ZHAO Z X, MING X, et al. Research progress of detection phantom of the quality control of MRI[J]. China Med Equip, 2020, 17(10): 206-210. DOI: 10.3969/J.ISSN.1672-8270.2020.10.053.
[13]
WU X Q, SUN J K, CHEN Z Y, et al. Magnetic resonance black-blood thrombus imaging can confirm chronic cerebral venous thrombosis: a case report and literature review[J/OL]. J Int Med Res, 2021, 49(5): 3000605211017001 [2022-10-28]. https://journals.sagepub.com/doi/10.1177/03000605211017001. DOI: 10.1177/03000605211017001.
[14]
SHI C Y, LEI Y M, HAN H B, et al. Transportation in the interstitial space of the brain can be regulated by neuronal excitation[J/OL]. Sci Rep, 2015, 5: 17673 [2022-08-02]. https://www.nature.com/articles/srep17673. DOI: 10.1038/srep17673.
[15]
XU F, HAN H B, ZHANG H L, et al. Quantification of Gd-DTPA concentration in neuroimaging using T₁3D MP-RAGE sequence at 3.0 T[J]. Magn Reson Imaging, 2011, 29(6): 827-834. DOI: 10.1016/j.mri.2011.02.019.
[16]
CHEN X L, XIE J X, HAN H B, et al. MR perfusion-weighted imaging and quantitative analysis of cerebral hemodynamics with symptom provocation in unmedicated patients with obsessive-compulsive disorder[J]. Neurosci Lett, 2004, 370(2/3): 206-211. DOI: 10.1016/j.neulet.2004.08.019.
[17]
LI S C, TANG M, ZHOU Y S, et al. Analysis of influencing factors on spatial resolution of magnetic resonance images based on K-space theory[J]. Ind Metrol, 2022, 32(2): 21-24, 47. DOI: 10.13228/j.boyuan.issn1002-1183.2021.0260.
[18]
HUANG Z F, FU L Y, WANG X Y, et al. Design and research of quality control system for medical magnetic resonance equipment based on B/S structure[J]. China Med Devices, 2020, 35(11): 23-26. DOI: 11.3969/j.issn.1674-1633.2020.11.007.
[19]
CHEN Z Q. Discussion on the duty and task of clinical medical engineers in the whole life cycle management of MRI equipment[J]. China Med Devices, 2020, 35(11): 5-8. DOI: 11.3969/j.issn.1674-1633.2020.11.002.
[20]
ZHANG W S, LI L W, LU X Y, et al. Influencing factors and parameter selection of magnetic resonance signal intensity[J]. J Pract Radiol, 1997(12): 102-103.
[21]
SUN H Z, HE Y, CAO H Q. Functional magnetic resonance imaging research in China[J]. CNS Neurosci Ther, 2021, 27(11): 1259-1267. DOI: 10.1111/cns.13725.
[22]
FANG R Q, CAO D R, WENG S P, et al. Evaluation of dynamic contrast-enhanced MR imaging and diffusion weighted MR imaging in qualitatively diagnosing complex ovarian tumors[J]. J Clin Radiol, 2014, 33(11): 1705-1709. DOI: 10.13437/j.cnki.jcr.2014.11.022.
[23]
LI G Z, HUANG R J, ZHU M, et al. Native T1-mapping and diffusion-weighted imaging (DWI) can be used to identify lung cancer pathological types and their correlation with Ki-67 expression[J]. J Thorac Dis, 2022, 14(2): 443-454. DOI: 10.21037/jtd-22-77.
[24]
LIU J C, LIU Q, GUAN R P, et al. T1, T2 value combined with serum tPSA in diagnosis of prostate cancer in transition zone[J]. J China Clin Med Imaging, 2022, 33(8): 546-550, 556. DOI: 10.12117/jccmi.2022.08.003.
[25]
WU Y, ZHOU H, TANG H X, et al. Quantitative T1 and T2 mapping techniques in evaluation of left ventricular myocardial native T1 and T2 values in different regions[J]. China Med Eng, 2022, 30(8): 12-17. DOI: 10.19338/j.issn.1672-2019.2022.08.003.
[26]
MOULIN K, VIALLON M, ROMERO W, et al. MRI of reperfused acute myocardial infarction edema: ADC quantification versus T1 and T2 mapping[J]. Radiology, 2020, 295(3): 542-549. DOI: 10.1148/radiol.2020192186.
[27]
MAI J L, ABUBRIG M, LEHMANN T, et al. T2 mapping in prostate cancer[J]. Invest Radiol, 2019, 54(3): 146-152. DOI: 10.1097/RLI.0000000000000520.
[28]
REN Y B. Application of MRI diffusion weighted imaging and ADC value in the diagnosis of prostate diseases[J]. China Med Device Inf, 2022, 28(7): 73-75. DOI: 10.15971/j.cnki.cmdi.2022.07.011.
[29]
YANG J D, HEIMBACH J K. New advances in the diagnosis and management of hepatocellular carcinoma[J/OL]. BMJ, 2020, 371: m3544 [2022-10-29]. https://www.bmj.com/content/371/bmj.m3544. DOI: 10.1136/bmj.m3544.
[30]
WANG G L. Clinical study on differential diagnosis of brain abscess and brain tumor necrosis by diffusion-weighted magnetic resonance imaging[J]. J Imaging Res Med Appl, 2022, 6(5): 77-79. DOI: 10.3969/j.issn.2096-3807.2022.05.026.
[31]
KIM M J, KIM J, KHO H S. Comparison of clinical characteristics between burning mouth syndrome patients with bilateral and unilateral symptoms[J]. Int J Oral Maxillofac Surg, 2020, 49(1): 38-43. DOI: 10.1016/j.ijom.2019.06.013.
[32]
CHU C C, JI Z Y, LI B. Research on maintenance management of equipment of magnetic resonance imaging based on RAM[J]. Chin J Med Lnstrumentation, 2022, 46(3): 350-354. DOI: 10.3969/j.issn.1671-7104.2022.03.024.
[33]
KEENAN K E, GIMBUTAS Z, DIENSTFREY A, et al. Multi-site, multi-platform comparison of MRI T1 measurement using the system phantom[J/OL]. PLoS One, 2021, 16(6): e0252966 [2022-3-15]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252966. DOI: 10.1371/journal.pone.0252966.
[34]
CHU C C, LI B. Reliability analysis of magnetic resonance imaging equipment based on non-homogeneous Poisson process[J]. Chin J Med Instrum, 2020, 44(6): 558-561, 564. DOI: 10.3969/j.issn.1671-7104.2020.06.019.
[35]
CHEN Y. Quality control and maintenance management of medical imaging equipment system[J]. China Med Device Inf, 2022, 28(15): 173-175. DOI: 10.15971/j.cnki.cmdi.2022.15.023.
[36]
LIU Z Y. Application and prospect of medical metrology in quality management of MRI[J]. China Med Devices, 2021, 36(12): 146-148, 153. DOI: 10.3969/j.issn.1674-1633.2021.12.035.

PREV Application of compressed sensing technology in rapid lumbar magnetic resonance imaging
NEXT Dural cavernous hemangiomas of the tentorium cerebelli: One case report
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn