Share this content in WeChat
Technical Article
Design and application of brain tissue channel tracer-based magnetic resonance imaging analyzer
WANG Hui  ZHOU Jie  CHENG Yumeng  WANG Miaotian  LIU Huipo  CAO Jiangfeng  XI Ke  ZHANG Hong  LI Nan  NIU Tianye  XIE Zhaoheng  ZHANG Yan  XUE Yanxue  LÜ Pengyu  LU Jiabin  XU Meng  HAN Hongbin 

Cite this article as: WANG H, ZHOU J, CHENG Y M, et al. Design and application of brain tissue channel tracer-based magnetic resonance imaging analyzer[J]. Chin J Magn Reson Imaging, 2023, 14(2): 109-115, 124. DOI:10.12015/issn.1674-8034.2023.02.019.

[Abstract] Objective To design and develop a brain tissue channel tracer-based magnetic resonance imaging analyzer based on the classical diffusion equation.Materials and Methods A signal source import system was established. Multi-band radio frequency excitation and signal acquisition units were designed. Image processing, modeling calculation and visualization modules were developed. The tracer-based magnetic resonance imaging analyzer for brain tissue channels was integrated. Twelve adult male Sprague Dawley rats were randomly divided into two groups on average. The traditional (n=6) and the current (n=6) research system scheme were respectively applied for detection. The diffusion coefficient and volume fraction were calculated and compared. The drainage process of interstitial fluid (ISF) was visualized.Results The instrument can simultaneously provide the structural parameters and the internal molecular diffusion of extracellular space (ECS) in rat brain, and realize the whole brain tracing of the ISF drainage pathway. Compared with the traditional scheme group, both diffusion coefficient and volume fraction decreased (P<0.01). And the standard deviation of the two measurement results decreased.Conclusions The development of the brain tissue channel tracer-based magnetic resonance imaging analyzer standardizes and automates the ECS detection process, making the detection results more stable and more realistic, laying a foundation for the subsequent research and development of ECS detection instruments compatible with electrical impedance, chemistry and other information.
[Keywords] brain extracellular space;tracer-based magnetic resonance imaging;interstitial fluid;system design;magnetic resonance imaging

WANG Hui1, 2, 3   ZHOU Jie1, 2, 3   CHENG Yumeng1, 2, 3   WANG Miaotian3   LIU Huipo4   CAO Jiangfeng5   XI Ke6   ZHANG Hong6   LI Nan7   NIU Tianye8   XIE Zhaoheng1   ZHANG Yan9   XUE Yanxue10   LÜ Pengyu11   LU Jiabin2, 3   XU Meng3   HAN Hongbin1, 2, 3, 12*  

1 Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China

2 Department of Radiology, Peking University Third Hospital, Beijing 100191, China

3 Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Beijing 100191, China

4 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China

5 Institute of Information Engineering, Chinese Academy of Sciences Beijing 100093, China

6 Shenzhen RF Tech Co., Ltd., Shenzhen 518054, China

7 Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 1000191, China

8 Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518067, China

9 State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China

10 National Institute on Drug Dependence, Peking University, Beijing 100191, China

11 State Key Laboratory for Turbulence and Complex Systems, Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing 100871, China

12 Peking University Shenzhen Graduate School, Shenzhen 518055, China

*Correspondence to: Han HB, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 61827808); Shenzhen Science and Technology Program (No. KQTD20180412181221912).
Received  2022-10-21
Accepted  2023-01-12
DOI: 10.12015/issn.1674-8034.2023.02.019
Cite this article as: WANG H, ZHOU J, CHENG Y M, et al. Design and application of brain tissue channel tracer-based magnetic resonance imaging analyzer[J]. Chin J Magn Reson Imaging, 2023, 14(2): 109-115, 124. DOI:10.12015/issn.1674-8034.2023.02.019.

SHETTY A K, ZANIRATI G. The interstitial system of the brain in health and disease[J]. Aging Dis, 2020, 11(1): 200-211. DOI: 10.14336/AD.2020.0103.
LIU W T, CAO Y P, ZHOU X H, et al. Interstitial fluid behavior and diseases[J/OL]. Adv Sci (Weinh), 2022, 9(6): e2100617 [2022-10-07]. DOI: 10.1002/advs.202100617.
THOMAS J H. Theoretical analysis of wake/sleep changes in brain solute transport suggests a flow of interstitial fluid[J/OL]. Fluids Barriers CNS, 2022, 19(1): 30 [2022-10-07]. DOI: 10.1186/s12987-022-00325-z.
LI Y Y, HAN H B, SHI K Y, et al. The mechanism of downregulated interstitial fluid drainage following neuronal excitation[J]. Aging Dis, 2020, 11(6): 1407-1422. DOI: 10.14336/AD.2020.0224.
GU Z Q, CHEN H S, ZHAO H, et al. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery[J]. Expert Opin Drug Deliv, 2022, 19(12): 1618-1635. DOI: 10.1080/17425247.2022.2139369.
SORIA F N, PAVIOLO C, DOUDNIKOFF E, et al. Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling[J/OL]. Nat Commun, 2020, 11(1): 3440 [2022-10-07]. DOI: 10.1038/s41467-020-17328-9.
TAOKA T, NAGANAWA S. Imaging for central nervous system (CNS) interstitial fluidopathy: disorders with impaired interstitial fluid dynamics[J]. Jpn J Radiol, 2021, 39(1): 1-14. DOI: 10.1007/s11604-020-01017-0.
XU X, GE X, XIONG H, et al. Toward dynamic, anisotropic, high-resolution, and functional measurement in the brain extracellular space[J/OL]. Neurophotonics, 2022, 9(3): 032210 [2022-10-07]. DOI: 10.1117/1.nph.9.3.032210.
NICHOLSON C, PHILLIPS JM, GARDNER-MEDWIN AR. Diffusion from an iontophoretic point source in the brain: role of tortuosity and volume fraction[J]. Brain Res, 1979, 169(3): 580-584. DOI: 10.1016/0006-8993(79)90408-6.
NICHOLSON C, TAO L. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging[J]. Biophys J, 1993, 65(6): 2277-2290. DOI: 10.1016/S0006-3495(93)81324-9.
POOLE J J A, MOSTAÇO-GUIDOLIN L B. Optical microscopy and the extracellular matrix structure: a review[J/OL]. Cells, 2021, 10(7): 1760 [2022-10-07]. DOI: 10.3390/cells10071760.
GODIN A G, VARELA J A, GAO Z H, et al. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain[J]. Nat Nanotechnol, 2017, 12(3): 238-243. DOI: 10.1038/nnano.2016.248.
PAVIOLO C, SORIA F N, FERREIRA J S, et al. Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis[J]. Methods, 2020, 174: 91-99. DOI: 10.1016/j.ymeth.2019.03.005.
PAVIOLO C, FERREIRA J S, LEE A, et al. Near-infrared carbon nanotube tracking reveals the nanoscale extracellular space around synapses[J]. Nano Lett, 2022, 22(17): 6849-6856. DOI: 10.1021/acs.nanolett.1c04259.
WANG R, HAN H B, SHI K Y, et al. The alteration of brain interstitial fluid drainage with myelination development[J]. Aging Dis, 2021, 12(7): 1729-1740. DOI: 10.14336/AD.2021.0305.
GAO Y J, HAN H B, DU J C, et al. Early changes to the extracellular space in the hippocampus under simulated microgravity conditions[J]. Sci China Life Sci, 2022, 65(3): 604-617. DOI: 10.1007/s11427-021-1932-3.
CAI X J, HE Q Y, WANG W, et al. Epidural pulsation accelerates the drainage of brain interstitial fluid[J/OL]. Aging Dis, 2022 [2022-10-07]. DOI: 10.14336/ad.2022.0609.
WANG W, HE Q, HOU J, et al. Stimulation modeling on three-dimensional anisotropic diffusion of MRI tracer in the brain interstitial space[J/OL]. Front Neuroinform, 2019, 13: 6 [2022-10-07]. DOI: 10.3389/fninf.2019.00006.
LI Y Q, SHENG H, LIANG L, et al. Application of anoptomagnetic probe Gd-DO3A-EA-FITC in imaging and analyzing the brain interstitial space[J]. J Peking Univ Health Sci, 2018, 50(2): 221-225. DOI: 10.3969/j.issn.1671-167X.2018.02.004.
BOBO R H, LASKE D W, AKBASAK A, et al. Convection-enhanced delivery of macromolecules in the brain[J]. Proc Natl Acad Sci U S A, 1994, 91(6): 2076-2080. DOI: 10.1073/pnas.91.6.2076.
FARAJI A H, RAJENDRAN S, JAQUINS-GERSTL A S, et al. Convection-enhanced delivery and principles of extracellular transport in the brain[J]. World Neurosurg, 2021, 151: 163-171. DOI: 10.1016/j.wneu.2021.05.050.
HAN H B, XIA Z L, CHEN H, et al. Simple diffusion delivery via brain interstitial route for the treatment of cerebral ischemia[J]. Sci China Life Sci, 2011, 54(3): 235-239. DOI: 10.1007/s11427-011-4141-6.
MEI L X. Development of vertebral phased array coil in low-field MRI system[D]. Shanghai: East China Normal University, 2007. DOI: 10.7666/d.y1072635.
BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: a learning framework for deformable medical image registration[J/OL]. IEEE Trans Med Imaging, 2019 [2022-10-07]. DOI: 10.1109/TMI.2019.2897538.
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). 2017, Venice: IEEE, 2017: 2980-2988. DOI: 10.1109/ICCV.2017.322.
PAXINOS G, WATSON C. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition [M]. Cambridge, MA: Academic Press, 2013.
MUGLER J P, BROOKEMAN J R. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE)[J]. Magn Reson Med, 1990, 15(1): 152-157. DOI: 10.1002/mrm.1910150117.
LIU B, BAI X Z, ZHOU F G, et al. Mutual information based three-dimensional registration of rat brain magnetic resonance imaging time-series[J]. Comput Electr Eng, 2013, 39(5): 1473-1484. DOI: 10.1016/j.compeleceng.2012.11.026.
SORIA F N, MIGUELEZ C, PEÑAGARIKANO O, et al. Current techniques for investigating the brain extracellular space[J/OL]. Front Neurosci, 2020, 14: 570750 [2022-10-11]. DOI: 10.3389/fnins.2020.570750.
SHI Y Y, TIAN Z W, WANG M, et al. Arrangement of boundary electrodes for detection of frontal lobe disease with electrical impedance tomography[J/OL]. J Med Imaging (Bellingham), 2021, 8(4): 044501 [2022-10-11]. DOI: 10.1117/1.JMI.8.4.044501.
GAO J H, LEI H, CHEN Q, et al. Magnetic resonance imaging: progresses and perspective[J]. Sci Sin Vitae, 2020, 50(11): 1285-1295. DOI: 10.1360/SSV-2020-0164.
POSTNIKOV E B, LAVROVA A I, POSTNOV D E. Transport in the brain extracellular space: diffusion, but which kind?[J/OL]. Int J Mol Sci, 2022, 23(20): 12401 [2022-10-11]. DOI: 10.3390/ijms232012401.
KOUNDAL S, ELKIN R, NADEEM S, et al. Optimal mass transport with Lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system[J/OL]. Sci Rep, 2020, 10(1): 1990 [2022-10-11]. DOI: 10.1038/s41598-020-59045-9.
SUN Y, SUN X P. Exploring the interstitial system in the brain: the last Mile of drug delivery[J]. Rev Neurosci, 2021, 32(4): 363-377. DOI: 10.1515/revneuro-2020-0057.
SAJIB S Z K, SADLEIR R. Magnetic resonance electrical impedance tomography[J]. Adv Exp Med Biol, 2022, 1380: 157-183. DOI: 10.1007/978-3-031-03873-0_7.

PREV MRI tracer imaging explore the diffusion changes of brain extracellular space in a rat model of intracranial cryptococcal infection
NEXT A body examination study of brain MRI registration in adolescents using fusion generative adversarial network

Tel & Fax: +8610-67113815    E-mail: