Share this content in WeChat
Original Article
Dynamic changes of percent amplitude of fluctuation in sleep deprivation based on resting-state fMRI
LI Leilei  WANG Xiaolei  LU Huizhen  SUN Zeheng  ZHAO Mengmeng  WANG Hong  ZHENG Jianmin  ZHU Yuanqiang 

Cite this article as: LI L L, WANG X L, LU H Z, et al. Dynamic changes of percent amplitude of fluctuation in sleep deprivation based on resting-state fMRI[J]. Chin J Magn Reson Imaging, 2023, 14(2): 92-96, 131. DOI:10.12015/issn.1674-8034.2023.02.016.

[Abstract] Objective To investigate the dynamic changes of brain spontaneous functional activity during sleep deprivation (SD) based on the percent amplitude of fluctuation (perAF).Materials and Methods A total of 36 healthy volunteers were recruited and their resting-state functional magnetic resonance imaging (fMRI) images were collected at 22:00 pm, 24:00 pm, 02:00 am, 04:00 am, and 06:00 am, respectively. Meanwhile, the Stanford Sleepiness Scale (SSS) was used to collect individual sleepiness data. One-way repeated measures ANOVA was used to compare the brain regions with different perAF dynamic changes over time (P<0.05, FDR correction). Pearson correlation analysis was used to explore the correlation between dynamic changes of perAF value and SSS score in different brain regions.Results Significant time effects for perAF were found mainly in the bilateral thalamus, right precentral gyrus, right parietal lobule, left medial prefrontal lobe and right superior temporal gyrus (FDR correction, P<0. 05, cluster size≥20 voxels). This means that perAF values in the above brain regions are significantly different at least two of the five time points. It was found that the right superior temporal gyrus (r=0.36, P=0.03; r=0.37, P=0.02) and left medial prefrontal lobe (r=0.33, P=0.05; r=0.41, P=0.01) at 22:00 pm and 06:00 am was positively correlated with SSS scores.Conclusions The abnormal activity of the default mode network, the frontoparietal attention network and the thalamus may be the important neural mechanism of increased sleepiness and decreased attention in individuals during sleep deprivation.
[Keywords] sleep deprivation;resting-state functional magnetic resonance imaging;percent amplitude of fluctuation;Stanford Sleepiness Scale;dynamic change

LI Leilei1   WANG Xiaolei1   LU Huizhen1   SUN Zeheng2   ZHAO Mengmeng2   WANG Hong1   ZHENG Jianmin1   ZHU Yuanqiang1*  

1 Department of Radiology, the First Affiliated Hospital of the Air Force Military Medical University, Xi'an 710032, China

2 Department of Medical Imaging, Yanliang District People's Hospital, Xi'an 710089, China

*Correspondence to: Zhu YQ, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Basic Research Program of Natural Science of Shaanxi Province (No. 2022JM-575).
Received  2022-09-19
Accepted  2023-02-03
DOI: 10.12015/issn.1674-8034.2023.02.016
Cite this article as: LI L L, WANG X L, LU H Z, et al. Dynamic changes of percent amplitude of fluctuation in sleep deprivation based on resting-state fMRI[J]. Chin J Magn Reson Imaging, 2023, 14(2): 92-96, 131. DOI:10.12015/issn.1674-8034.2023.02.016.

BASNER M, ASCH D A, SHEA J A, et al. Sleep and Alertness in a Duty-Hour Flexibility Trial in Internal Medicine[J]. N Engl J Med, 2019, 380 (10): 915-923. DOI: 10.1056/NEJMoa1810641.
XU Y Q, WANG X R, HU W Z, et al. Neural mechanism of sustained attention deficits after sleep deprivation: a resting-state functional-MRI study using fractional amplitude of low-frequency fluctuation[J]. Radiol Practice, 2021, 36(2):158-163. DOI: 10.13609/j.cnki.1000-0313.2021.02.003.
ZHOU L, TANG Z, ZUO Z, et al. Neural Mechanism Underlying the Sleep Deprivation-Induced Abnormal Bistable Perception[J]. Cereb Cortex, 2022, 32 (3): 583-592. DOI: 10.1093/cercor/bhab235.
YAMAZAKI E M, ANTLER C A, LASEK C R, et al. Residual, differential neurobehavioral deficits linger after multiple recovery nights following chronic sleep restriction or acute total sleep deprivation[J/OL]. Sleep, 2021, 44(4): zsaa224 [2022-09-18]. DOI: 10.1093/sleep/zsaa224.
MAI Z F, XU H Y, MA N. Effect of acute sleep deprivation on cognition and emotion: an updated review[J]. Chinese General Practice, 2021, 24(29): 3653-3659. DOI: 10.12114/j.issn.1007-9572.2021.01.016.
GREER S M, GOLDSTEIN A N, WALKER M P. The impact of sleep deprivation on food desire in the human brain[J/OL]. Nat Commun, 2013, 4: 2259 [2022-09-18]. DOI: 10.1038/ncomms3259.
WANG X S, ARMSTRONG M E, CAIRNS B J, et al. Shift work and chronic disease: the epidemiological evidence[J]. Occup Med (Lond), 2011, 61 (2): 78-89. DOI: 10.1093/occmed/kqr001.
CHOO W C, LEE W W, VENKATRAMAN V, et al. Dissociation of cortical regions modulated by both working memory load and sleep deprivation and by sleep deprivation alone[J]. Neuroimage, 2005, 25 (2): 579-587. DOI: 10.1016/j.neuroimage.2004.11.029.
PESOLI M, RUCCO R, LIPAROTI M, et al. A night of sleep deprivation alters brain connectivity and affects specific executive functions[J]. Neurol Sci, 2022, 43 (2): 1025-1034. DOI: 10.1007/s10072-021-05437-2.
OCHAB J K, SZWED J, OLEŚ K, et al. Observing changes in human functioning during induced sleep deficiency and recovery periods[J/OL]. PLoS One, 2021, 16 (9): e0255771 [2022-09-18]. DOI: 10.1371/journal.pone.0255771.
JIA X Z, SUN J W, JI G J, et al. Percent amplitude of fluctuation: A simple measure for resting-state fMRI signal at single voxel level[J/OL]. PLoS One, 2020, 15 (1): e0227021 [2022-09-18]. DOI: 10.1371/journal.pone.0227021.
YU Y, CHEN L, WANG Q, et al. Altered Amplitude of Low-Frequency Fluctuations in Inactive Patients with Nonneuropsychiatric Systemic Lupus Erythematosus[J/OL]. Neural Plast, 2019, 2019: 9408612 [2022-09-18]. DOI: 10.1155/2019/9408612.
SMALLWOOD J, BERNHARDT B C, LEECH R, et al. The default mode network in cognition: a topographical perspective[J]. Nat Rev Neurosci, 2021, 22 (8): 503-513. DOI: 10.1038/s41583-021-00474-4.
RAICHLE M E. The brain's default mode network[J]. Annu Rev Neurosci, 2015, 38: 433-447. DOI: 10.1146/annurev-neuro-071013-014030.
HAN Y, MA H, WANG Z Z, et al. A study on the change of resting state functional connection of default mode network in clinically remitted patients with major depression disorder[J]. Chin J Behav Med & Brain Sci, 2020, 29(5): 394-399. DOI: 10.3760/cma.j.cn371468-20191014-00740.
YEO B T, TANDI J, CHEE M W. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation[J]. Neuroimage, 2015, 111: 147-158. DOI: 10.1016/j.neuroimage.2015.02.018.
DE HAVAS J A, PARIMAL S, SOON C S, et al. Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance[J]. Neuroimage, 2012, 59 (2): 1745-1751. DOI: 10.1016/j.neuroimage.2011.08.026.
ZHU Y, XI Y, FEI N, et al. Dynamics of cerebral responses to sustained attention performance during one night of sleep deprivation[J]. J Sleep Res, 2018, 27 (2): 184-196. DOI: 10.1111/jsr.12582.
CHEN W H, CHEN J, LIN X, et al. Dissociable effects of sleep deprivation on functional connectivity in the dorsal and ventral default mode networks[J]. Sleep Med, 2018, 50: 137-144. DOI: 10.1016/j.sleep.2018.05.040.
DRUMMOND S P, BROWN G G, STRICKER J L, et al. Sleep deprivation-induced reduction in cortical functional response to serial subtraction[J]. Neuroreport, 1999, 10(18): 3745-3748. DOI: 10.1097/00001756-199912160-00004.
TOMASI D, WANG R L, TELANG F, et al. Impairment of attentional networks after 1 night of sleep deprivation[J]. Cereb Cortex, 2009, 19(1): 233-240. DOI: 10.1093/cercor/bhn073.
CAI Y, MAI Z, LI M, et al. Altered frontal connectivity after sleep deprivation predicts sustained attentional impairment: A resting-state functional magnetic resonance imaging study[J/OL]. J Sleep Res, 2021, 30(5): e13329 [2022-09-18]. DOI: 10.1111/jsr.13329.
SCHIFF N D. Central thalamic contributions to arousal regulation and neurological disorders of consciousness[J]. Ann N Y Acad Sci, 2008, 1129: 105-118. DOI: 10.1196/annals.1417.029.
LI B Z, CAO Y, ZHANG Y, et al. Relation of Decreased Functional Connectivity Between Left Thalamus and Left Inferior Frontal Gyrus to Emotion Changes Following Acute Sleep Deprivation[J/OL]. Front Neurol, 2021, 12: 642411 [2022-09-18]. DOI: 10.3389/fneur.2021.642411.
CHEN Y, PAN L, MA N. Altered effective connectivity of thalamus with vigilance impairments after sleep deprivation[J/OL]. J Sleep Res, 2022, 31(6): e13693 [2022-09-18]. DOI: 10.1111/jsr.13693.
GENT T C, BASSETTI C, ADAMANTIDIS A R. Sleep-wake control and the thalamus[J]. Curr Opin Neurobiol, 2018, 52: 188-197. DOI: 10.1016/j.conb.2018.08.002.
KRAUSE A J, SIMON E B, MANDER B A, et al. The sleep-deprived human brain[J]. Nat Rev Neurosci, 2017, 18(7): 404-418. DOI: 10.1038/nrn.2017.55.
MA N, DINGES D F, BASNER M, et al. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies[J]. Sleep, 2015, 38(2): 233-240. DOI: 10.5665/sleep.4404.
LIM J, DINGES D F. Sleep deprivation and vigilant attention[J]. Ann N Y Acad Sci, 2008, 1129: 305-322. DOI: 10.1196/annals.1417.002.
HUDSON A N, VAN DONGEN H P A, HONN K A. Sleep deprivation, vigilant attention, and brain function: a review[J]. Neuropsychopharmacology, 2020, 45 (1): 21-30. DOI: 10.1038/s41386-019-0432-6.
QI J, LI B Z, ZHANG Y, et al. Altered Hypothalamic Functional Connectivity Following Total Sleep Deprivation in Young Adult Males[J/OL]. Front Neurosci, 2021, 15: 688247 [2022-09-18]. DOI: 10.3389/fnins.2021.688247.

PREV Whole spine MRI findings in endemic fluorosis
NEXT Mechanism of epidural artery implantation in accelerating the drainage of thalamic interstitial fluid by using tracer-based MRI

Tel & Fax: +8610-67113815    E-mail: