Share this content in WeChat
Clinical Article
The value of MAP-MRI and DCE-MRI in differentiating glioblastoma from brain metastases
HAO Zhiyue  GAO Yang  Wu Qiong  Wang Shaoyu  Zhang Huapeng 

Cite this article as: HAO Z Y, GAO Y, Wu Q, et al. The value of MAP-MRI and DCE-MRI in differentiating glioblastoma from brain metastases[J]. Chin J Magn Reson Imaging, 2023, 14(2): 12-20. DOI:10.12015/issn.1674-8034.2023.02.003.

[Abstract] Objective To explore the clinical value of mean apparent propagator MRI (MAP-MRI) and dynamic contrast-enhanced MRI (DCE-MRI) in differentiating glioblastoma (GBM) from brain metastases (BMs).Materials and Methods Twenty-seven patients with GBM [isocitrate dehydrogenase-wildtype (IDH-wt)] who were confirmed by surgery and twenty-four patients with BMs confirmed by surgery or clinical follow-up performed conventional MRI sequences, diffusion spectrum imaging (DSI) and DCE-MRI. The parameters of MAP-MRI were obtained by DSI analysis. And the parameters of DCE are processed by Siemens workstation. The parameters of the tumor parenchyma area and peritumoral edema area and the contralateral normal brain tissue in these two groups were measured on each parameter map. To minimize individual differences, the values of each parameter were divided by the values of the contralateral normal brain tissue to obtain the relative values of each parameter. χ2 test was used to compare the gender of the two groups; independent samples t-test and Mann-Whitney U-test were used to compare the parameters and relative parameters of MAP-MRI and DCE-MRI between the two groups. P<0.05 was considered to be significant. Then analysis was performed. The DeLong test was used to evaluate the differential diagnosis efficiency of each parameter.Results There was no significant difference in age and sex between the two groups (P=0.327 and P=0.247). In the GBM (IDH-wt) group, the non Gaussian axial (NGAx), non Gaussian vertical (NGRad), return to the axis probability (RTAP) and return to the plane probability (RTPP) were higher than those of BMs group, and mean square displacement (MSD) was lower than that in BMs group, and the difference was significant (P<0.05). The relative volume transfer constant (rKtrans) of peritumoral edema area in GBM (IDH-wt) group was higher than that in BMs, while the relative rate constant (rKep) was lower than that in BMs group, and the difference was significant (P<0.05). RTPP and NGAx of tumor parenchyma area are the parameters with higher AUC for differentiating GBM (IDH-wt) group BMs. The AUC is 0.985 and 0.937, and the sensitivity is 0.963 and 0.926, and the specificity is 0.917 and 0.833, respectively.Conclusions MAP-MRI and DCE-MRI showed great diagnostic value in differentiating GBM (IDH-wt) from BMs. RTPP and NGAx in tumor parenchymal area could be used as good imaging markers.
[Keywords] glioblastoma;brain metastasis;magnetic resonance imaging;dynamic contrast enhanced;mean apparent propagator-magnetic resonance imaging;antidiastole

HAO Zhiyue1   GAO Yang1*   Wu Qiong1   Wang Shaoyu2   Zhang Huapeng2  

1 Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

2 Siemens Medical System Co., Ltd., Shanghai 201318, China

*Correspondence to: Gao Y, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Inner Mongolia Autonomous Region Science and Technology Plan Project (No. 2019GG047).
Received  2022-08-15
Accepted  2023-02-01
DOI: 10.12015/issn.1674-8034.2023.02.003
Cite this article as: HAO Z Y, GAO Y, Wu Q, et al. The value of MAP-MRI and DCE-MRI in differentiating glioblastoma from brain metastases[J]. Chin J Magn Reson Imaging, 2023, 14(2): 12-20. DOI:10.12015/issn.1674-8034.2023.02.003.

GBD 2016 Brain and Other CNS Cancer Collaborators. Global, regional, and national burden of brain and other CNS cancer, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(4): 376-393. DOI: 10.1016/s1474-4422(18)30468-x.
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
JIANG J, ZHANG X L, ZHOU J L. Research progress on isocitrate dehydrogenase genotype and imaging of glioma[J]. Chin J Magn Reson Imag, 2021, 107(5): 103-106. DOI: 10.12015/issn.1674-8034.2021.05.025.
SUN C, ZHAO Y, SHI J, et al. Isocitrate dehydrogenase1 mutation reduces the pericyte coverage of microvessels in astrocytic tumours[J]. J Neurooncol, 2019, 143(2): 187-196. DOI: 10.1007/s11060-019-03156-5.
PLATTA C S, KHUNTIA D, MEHTA M P, et al. Current treatment strategies for brain metastasis and complications from therapeutic techniques: a review of current literature[J]. Am J Clin Oncol, 2010, 33(4): 398-407. DOI: 10.1097/COC.0b013e318194f744.
MAURER M H, SYNOWITZ M, BADAKSHI H, et al. Glioblastoma multiforme versus solitary supratentorial brain metastasis: differentiation based on morphology and magnetic resonance signal characteristics[J]. Rofo, 2013, 185(3): 235-240. DOI: 10.1055/s-0032-1330318.
WANG S, KIM S, CHAWLA S, et al. Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging[J]. AJNR Am J Neuroradiol, 2011, 32(3): 507-514. DOI: 10.3174/ajnr.A2333.
TEPE M, SAYLISOY S, TOPRAK U, et al. The Potential Role of Peritumoral Apparent Diffusion Coefficient Evaluation in Differentiating Glioblastoma and Solitary Metastatic Lesions of the Brain[J]. Curr Med Imaging, 2021, 17(10): 1200-1208. DOI: 10.2174/1573405617666210316120314.
PONS-ESCODA A, GARCIA-RUIZ A, NAVAL-BAUDIN P, et al. Voxel-level analysis of normalized DSC-PWI time-intensity curves: a potential generalizable approach and its proof of concept in discriminating glioblastoma and metastasis[J]. Eur Radiol, 2022, 32(6): 3705-3715. DOI: 10.1007/s00330-021-08498-1.
HEYNOLD E, ZIMMERMANN M, HORE N, et al. Physiological MRI Biomarkers in the Differentiation Between Glioblastomas and Solitary Brain Metastases[J]. Mol Imaging Biol, 2021, 23(5): 787-795. DOI: 10.1007/s11307-021-01604-1.
SCHMAHMANN J D, PANDYA D N, WANG R, et al. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography[J]. Brain, 2007, 130(Pt 3): 630-653. DOI: 10.1093/brain/awl359.
LE H, ZENG W, ZHANG H, et al. Mean Apparent Propagator MRI Is Better Than Conventional Diffusion Tensor Imaging for the Evaluation of Parkinson's Disease: A Prospective Pilot Study[J/OL]. Front Aging Neurosci, 2020, 12: 563595 [2022-08-14]. DOI: 10.3389/fnagi.2020.563595.
XI Y B, KANG X W, WANG N, et al. Differentiation of primary central nervous system lymphoma from high-grade glioma and brain metastasis using arterial spin labeling and dynamic contrast-enhanced magnetic resonance imaging[J]. Eur J Radiol, 2019, 112: 59-64. DOI: 10.1016/j.ejrad.2019.01.008.
MAO J, ZENG W, ZHANG Q, et al. Differentiation between high-grade gliomas and solitary brain metastases: a comparison of five diffusion-weighted MRI models[J/OL]. BMC Med Imaging, 2020, 20(1): 124 [2022-08-14]. DOI: 10.1186/s12880-020-00524-w.
TUPÝ R, MÍRKA H, MRAČEK J, et al. Tumor-related Perfusion Changes in White Matter Adjacent to Brain Tumors: Pharmacodynamic Analysis of Dynamic 3T Magnetic Resonance Imaging[J]. Anticancer Res, 2018, 38(7): 4149-4152. DOI: 10.21873/anticanres.12707.
LU S, GAO Q, YU J, et al. Utility of dynamic contrast-enhanced magnetic resonance imaging for differentiating glioblastoma, primary central nervous system lymphoma and brain metastatic tumor[J]. Eur J Radiol, 2016, 85(10): 1722-1727. DOI: 10.1016/j.ejrad.2016.07.005.
FENG M W, FANG M, WANG G H. The application value of 3D arterial spin labeling and dynamic contrast-enhanced MRI in differential diagnosis of high-grade gliomas and brain metastatic tumors[J]. J Chin Clin Med Imag, 2021, 32(8): 574-578. DOI: 10.12117/jccmi.2021.08.011.
FORDHAM A J, HACHERL C C, PATEL N, et al. Differentiating Glioblastomas from Solitary Brain Metastases: An Update on the Current Literature of Advanced Imaging Modalities[J/OL]. Cancers, 2021, 13(12): 2960 [2022-08-14]. DOI: 10.3390/cancers13122960.
LIU Z L, WANG X C, ZHANG H, et al. MR diffusion imaging: research advances in prognosis prediction of gliomas[J]. Chin J Magn Reson Imag, 2021, 12(1): 77-80. DOI: 10.12015/issn.1674-8034.2021.01.017.
WANG P, WENG L, XIE S, et al. Primary application of mean apparent propagator-MRI diffusion model in the grading of diffuse glioma[J/OL]. Eur J Radiol, 2021, 138: 109622 [2022-08-14]. DOI: 10.1016/j.ejrad.2021.109622.
GAO A, ZHANG H, YAN X, et al. Whole-Tumor Histogram Analysis of Multiple Diffusion Metrics for Glioma Genotyping[J]. Radiology, 2022, 302(3): 652-661. DOI: 10.1148/radiol.210820.
SUN Y, SU C, DENG K, et al. Mean apparent propagator-MRI in evaluation of glioma grade, cellular proliferation, and IDH-1 gene mutation status[J]. Eur Radiol, 2022, 32(6): 3744-3754. DOI: 10.1007/s00330-021-08522-4.
JIANG R, JIANG S, SONG S, et al. Laplacian-Regularized Mean Apparent Propagator-MRI in Evaluating Corticospinal Tract Injury in Patients with Brain Glioma[J]. Korean J Radiol, 2021, 22(5): 759-769. DOI: 10.3348/kjr.2020.0949.
WANG Y, DENG K, SUN Y, et al. Preserved microstructural integrity of the corticospinal tract in patients with glioma-induced motor epilepsy: a study using mean apparent propagator magnetic resonance imaging[J]. Quant Imaging Med Surg, 2022, 12(2): 1415-1427. DOI: 10.21037/qims-21-679.
AVRAM A V, SARLLS J E, BARNETT A S, et al. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure[J]. Neuroimage, 2016, 127: 422-434. DOI: 10.1016/j.neuroimage.2015.11.027.
WANG P, GAO E, QI J, et al. Quantitative analysis of mean apparent propagator-magnetic resonance imaging for distinguishing glioblastoma from solitary brain metastasis[J/OL]. Eur J Radiol, 2022, 154: 110430 [2022-08-14]. DOI: 10.1016/j.ejrad.2022.110430.
ÖZARSLAN E, KOAY C G, SHEPHERD T M, et al. Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure[J]. NeuroImage, 2013, 78: 16-32. DOI: 10.1016/j.neuroimage.2013.04.016.
VAN CAMP N, BLOCKX I, VERHOYE M, et al. Diffusion tensor imaging in a rat model of Parkinson's disease after lesioning of the nigrostriatal tract[J]. NMR Biomed, 2009, 22(7): 697-706. DOI: 10.1002/nbm.1381.
HUI E S, CHEUNG M M, QI L, et al. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis[J]. Neuroimage, 2008, 42(1): 122-134. DOI: 10.1016/j.neuroimage.2008.04.237.
WU Y C, FIELD A S, ALEXANDER A L. Computation of diffusion function measures in q-space using magnetic resonance hybrid diffusion imaging[J]. IEEE Trans Med Imaging, 2008, 27(6): 858-865. DOI: 10.1109/tmi.2008.922696.
APARICI-ROBLES F, DAVIDHI A, CAROT-SIERRA J, et al. Glioblastoma versus solitary brain metastasis: MRI differentiation using the edema perfusion gradient[J]. J Neuroimaging, 2022, 32(1): 127-133. DOI: 10.1111/jon.12920.

PREV Quantitative susceptibility mapping of substantia nigra in the diagnosis of Parkinson,s disease: A Meta analysis
NEXT Multimodal MRI manifestations of high altitude cerebral edema

Tel & Fax: +8610-67113815    E-mail: