Share this content in WeChat
Progress and prospects of ultrashort echo time magnetic resonance imaging for pulmonary nodules
ZHANG Jingyu  XIONG Ziqi  LI Zhiyong 

Cite this article as: ZHANG J Y, XIONG Z Q, LI Z Y. Progress and prospects of ultrashort echo time magnetic resonance imaging for pulmonary nodules[J]. Chin J Magn Reson Imaging, 2023, 14(1): 183-188. DOI:10.12015/issn.1674-8034.2023.01.034.

[Abstract] CT has been widely used for the early screening and follow-up management of pulmonary nodules. Ultrashort echo time (UTE) sequences, the most optimized MRI sequence available, have been progressively used in clinical studies of pulmonary nodules because of their absence of ionizing radiation, and are expected to be an alternative to CT lung examinations. In a controlled study of pulmonary nodules with chest CT, UTE MRI showed high ability to detect pulmonary nodules and consistent classification. The author mainly reviewed the clinical applications related to the detection ability and evaluation accuracy of UTE MRI for pulmonary nodules, as well as the development prospects of UTE MRI protocol optimization, UTE MRI combined with pathology control studies, radiomics and deep learning of UTE MRI.
[Keywords] ultrashort echo time series;magnetic resonance imaging;pulmonary nodule;lung neoplasms;imaging scheme optimization;radiomics;deep learning

ZHANG Jingyu   XIONG Ziqi   LI Zhiyong*  

Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Corresponding author: Li ZY, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Dalian Science and Technology Innovation Fund (No. 2022JJ13SN078).
Received  2022-03-28
Accepted  2022-12-12
DOI: 10.12015/issn.1674-8034.2023.01.034
Cite this article as: ZHANG J Y, XIONG Z Q, LI Z Y. Progress and prospects of ultrashort echo time magnetic resonance imaging for pulmonary nodules[J]. Chin J Magn Reson Imaging, 2023, 14(1): 183-188. DOI:10.12015/issn.1674-8034.2023.01.034.

Oncology Society of Chinese Medical Association, Chinese Medical Association Publishing House. Chinese Medical Association guideline for clinical diagnosis and treatment of lung cancer (2022 edition)[J]. Chin J Oncol, 2022, 44(6): 457-490. DOI: 10.3760/cma.j.cn112152-20220413-00255.
CHA M J, AHN H S, CHOI H, et al. Accelerated stack-of-spirals free-breathing three-dimensional ultrashort echo time lung magnetic resonance imaging: a feasibility study in patients with breast cancer[J/OL]. Front Oncol, 2021, 11: 746059 [2022-03-27]. DOI: 10.3389/fonc.2021.746059.
TORRES L, KAMMERMAN J, HAHN A D, et al. "structure-function imaging of lung disease using ultrashort echo time MRI"[J]. Acad Radiol, 2019, 26(3): 431-441. DOI: 10.1016/j.acra.2018.12.007.
HAMAMOTO K, CHIBA E, OYAMA-MANABE N, et al. Assessment of pulmonary arteriovenous malformation with ultra-short echo time magnetic resonance imaging[J/OL]. Eur J Radiol, 2022, 147: 110144 [2022-03-27]. DOI: 10.1016/j.ejrad.2021.110144.
TRIPHAN S M F, WEINHEIMER O, GUTBERLET M, et al. EchoTime-DependentObserved LungT1 in patients with chronic obstructive pulmonary disease in correlation with quantitative imaging and clinical indices[J]. Magnetic Resonance Imaging, 2021, 54(5): 1562-1571. DOI: 10.1002/jmri.27746.
BENLALA I, ALBAT A, BLANCHARD E, et al. Quantification of MRI T2 interstitial lung disease signal-intensity volume in idiopathic pulmonary fibrosis: a pilot study[J]. J Magn Reson Imaging, 2021, 53(5): 1500-1507. DOI: 10.1002/jmri.27454.
HEIDENREICH J F, WENG A M, METZ C, et al. Three-dimensional ultrashort echo time MRI for functional lung imaging in cystic fibrosis[J]. Radiology, 2020, 296(1): 191-199. DOI: 10.1148/radiol.2020192251.
BUSCHLE L R, KURZ F T, KAMPF T, et al. Dephasing and diffusion on the alveolar surface[J/OL]. Phys Rev E, 2017, 95(2-1): 022415 [2022-03-27]. DOI: 10.1103/PhysRevE.95.022415.
BERGIN C J, PAULY J M, MACOVSKI A. Lung parenchyma: projection reconstruction MR imaging[J]. Radiology, 1991, 179(3): 777-781. DOI: 10.1148/radiology.179.3.2027991.
GEIGER J, ZEIMPEKIS K G, JUNG A, et al. Clinical application of ultrashort echo-time MRI for lung pathologies in children[J/OL]. Clin Radiol, 2021, 76(9): 708.e9-708708.e17 [2022-03-27]. DOI: 10.1016/j.crad.2021.05.015.
DARÇOT E, DELACOSTE J, DUNET V, et al. Lung MRI assessment with high-frequency noninvasive ventilation at 3 T[J]. Magn Reson Imaging, 2020, 74: 64-73. DOI: 10.1016/j.mri.2020.09.006.
RENZ D M, HERRMANN K H, KRAEMER M, et al. Ultrashort echo time MRI of the lung in children and adolescents: comparison with non-enhanced computed tomography and standard post-contrast T1w MRI sequences[J]. Eur Radiol, 2022, 32(3): 1833-1842. DOI: 10.1007/s00330-021-08236-7.
HUANG Y S, NIISATO E, SU M M, et al. Detecting small pulmonary nodules with spiral ultrashort echo time sequences in 1.5 T MRI[J]. MAGMA, 2021, 34(3): 399-409. DOI: 10.1007/s10334-020-00885-x.
OHNO Y, KOYAMA H, YOSHIKAWA T, et al. Pulmonary high-resolution ultrashort TE MR imaging: comparison with thin-section standard- and low-dose computed tomography for the assessment of pulmonary parenchyma diseases[J]. J Magn Reson Imaging, 2016, 43(2): 512-532. DOI: 10.1002/jmri.25008.
HUANG Y S, NIISATO E, SU M M, et al. Applying compressed sensing volumetric interpolated breath-hold examination and spiral ultrashort echo time sequences for lung nodule detection in MRI[J/OL]. Diagnostics (Basel), 2021, 12(1): 93 [2022-03-27]. DOI: 10.3390/diagnostics12010093.
OHNO Y, KOYAMA H, YOSHIKAWA T, et al. Standard-, reduced-, and No-dose thin-section radiologic examinations: comparison of capability for nodule detection and nodule type assessment in patients suspected of having pulmonary nodules[J]. Radiology, 2017, 284(2): 562-573. DOI: 10.1148/radiol.2017161037.
HATABU H, OHNO Y, GEFTER W B, et al. Expanding applications of pulmonary MRI in the clinical evaluation of lung disorders: fleischner society position paper[J]. Radiology, 2020, 297(2): 286-301. DOI: 10.1148/radiol.2020201138.
BURRIS N S, JOHNSON K M, LARSON P E, et al. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system[J]. Radiology, 2016, 278(1): 239-246. DOI: 10.1148/radiol.2015150489.
OHNO Y, TAKENAKA D, YOSHIKAWA T, et al. Efficacy of ultrashort echo time pulmonary MRI for lung nodule detection and lung-RADS classification[J]. Radiology, 2022, 302(3): 697-706. DOI: 10.1148/radiol.211254.
WIELPÜTZ M O, LEE H Y, KOYAMA H, et al. Morphologic characterization of pulmonary nodules with ultrashort TE MRI at 3T[J]. AJR Am J Roentgenol, 2018, 210(6): 1216-1225. DOI: 10.2214/AJR.17.18961.
MACMAHON H, NAIDICH D P, GOO J M, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the fleischner society 2017[J]. Radiology, 2017, 284(1): 228-243. DOI: 10.1148/radiol.2017161659.
METZ C, BÖCKLE D, HEIDENREICH J F, et al. Pulmonary imaging of immunocompromised patients during hematopoietic stem cell transplantation using non-contrast-enhanced three-dimensional ultrashort echo time (3D-UTE) MRI[J]. Rofo, 2022, 194(1): 39-48. DOI: 10.1055/a-1535-2341.
NAIDICH D P, BANKIER A A, MACMAHON H, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society[J]. Radiology, 2013, 266(1): 304-317. DOI: 10.1148/radiol.12120628.
WIELPÜTZ M O, TRIPHAN S M F, OHNO Y, et al. Outracing lung signal decay - potential of ultrashort echo time MRI[J]. Rofo, 2019, 191(5): 415-423. DOI: 10.1055/a-0715-2246.
DELACOSTE J, DUNET V, DOURNES G, et al. MR volumetry of lung nodules: a pilot study[J/OL]. Front Med (Lausanne), 2019, 6: 18 [2022-03-27]. DOI: 10.3389/fmed.2019.00018.
LEDERLIN M, PUDERBACH M, MULEY T, et al. Correlation of radio- and histomorphological pattern of pulmonary adenocarcinoma[J]. Eur Respir J, 2013, 41(4): 943-951. DOI: 10.1183/09031936.00056612.
KASTNER J, HOSSAIN R, JEUDY J, et al. Lung-RADS version 1.0 versus lung-RADS version 1.1: comparison of categories using nodules from the national lung screening trial[J]. Radiology, 2021, 300(1): 199-206. DOI: 10.1148/radiol.2021203704.
HIRSCH F W, SORGE I, VOGEL-CLAUSSEN J, et al. The Current status and further prospects for lung magnetic resonance imaging in pediatric radiology[J]. Pediatr Radiol, 2020, 50(5): 734-749. DOI: 10.1007/s00247-019-04594-z.
ZANETTE B, SCHRAUBEN E M, MUNIDASA S, et al. Clinical feasibility of structural and functional MRI in free-breathing neonates and infants[J]. J Magn Reson Imaging, 2022, 55(6): 1696-1707. DOI: 10.1002/jmri.28165.
ZEIMPEKIS K G, KELLENBERGER C J, GEIGER J. Assessment of lung density in pediatric patients using three-dimensional ultrashort echo-time and four-dimensional zero echo-time sequences[J]. Jpn J Radiol, 2022, 40(7): 722-729. DOI: 10.1007/s11604-022-01258-1.
GRÄFE D, ANDERS R, PRENZEL F, et al. Pediatric MR lung imaging with 3D ultrashort-TE in free breathing: are we past the conventional T2 sequence?[J]. Pediatr Pulmonol, 2021, 56(12): 3899-3907. DOI: 10.1002/ppul.25664.
HAHN A D, MALKUS A, KAMMERMAN J, et al. Effects of neonatal lung abnormalities on parenchymal R2* estimates[J]. J Magn Reson Imaging, 2021, 53(6): 1853-1861. DOI: 10.1002/jmri.27487.
WILLMERING M M, ROACH D J, KRAMER E L, et al. Sensitive structural and functional measurements and 1-year pulmonary outcomes in pediatric cystic fibrosis[J]. J Cyst Fibros, 2021, 20(3): 533-539. DOI: 10.1016/j.jcf.2020.11.019.
WILLMERING M M, WALKUP L L, NIEDBALSKI P J, et al. Pediatric129 Xe gas-transfer MRI-feasibility and applicability[J]. J Magn Reson Imaging, 2022, 56(4): 1207-1219. DOI: 10.1002/jmri.28136.
TANAKA Y, OHNO Y, HANAMATSU S, et al. State-of-the-art MR imaging for thoracic diseases[J]. Magn Reson Med Sci, 2022, 21(1): 212-234. DOI: 10.2463/mrms.rev.2020-0184.
BOADA F E, KOESTERS T, BLOCK K T, et al. Improved detection of small pulmonary nodules through simultaneous MR/PET imaging[J]. PET Clin, 2018, 13(1): 89-95. DOI: 10.1016/j.cpet.2017.09.001.
KRUGER S J, FAIN S B, JOHNSON K M, et al. Oxygen-enhanced 3D radial ultrashort echo time magnetic resonance imaging in the healthy human lung[J]. NMR Biomed, 2014, 27(12): 1535-1541. DOI: 10.1002/nbm.3158.
VOSKREBENZEV A, VOGEL-CLAUSSEN J. Proton MRI of the lung: how to tame scarce protons and fast signal decay[J]. J Magn Reson Imaging, 2021, 53(5): 1344-1357. DOI: 10.1002/jmri.27122.
BROOKE J P, HALL I P. Novel thoracic MRI approaches for the assessment of pulmonary physiology and inflammation[J]. Adv Exp Med Biol, 2021, 1304: 123-145. DOI: 10.1007/978-3-030-68748-9_8.
OHNO Y, KOYAMA H, NOGAMI M, et al. Dynamic oxygen-enhanced MRI versus quantitative CT: pulmonary functional loss assessment and clinical stage classification of smoking-related COPD[J/OL]. AJR Am J Roentgenol, 2008, 190(2): W93-W99 [2022-03-27]. DOI: 10.2214/AJR.07.2511.
ZHANG W J, NIVEN R M, YOUNG S S, et al. Dynamic oxygen-enhanced magnetic resonance imaging of the lung in asthma: initial experience[J]. Eur J Radiol, 2015, 84(2): 318-326. DOI: 10.1016/j.ejrad.2014.10.021.
BHATTACHARYA I, RAMASAWMY R, JAVED A, et al. Oxygen-enhanced functional lung imaging using a contemporary 0.55 T MRI system[J/OL]. NMR Biomed, 2021, 34(8): e4562 [2022-03-27]. DOI: 10.1002/nbm.4562.
LIU H, ZHENG L, SHI G, et al. Pulmonary functional imaging for lung adenocarcinoma: combined MRI assessment based on IVIM-DWI and OE-UTE-MRI[J/OL]. Front Oncol, 2021, 11: 677942 [2022-03-27]. DOI: 10.3389/fonc.2021.677942.
GUO F M, CAPALDI D P, MCCORMACK D G, et al. Ultra-short echo-time magnetic resonance imaging lung segmentation with under-Annotations and domain shift[J/OL]. Med Image Anal, 2021, 72: 102107 [2022-03-27]. DOI: 10.1016/
WENG A M, HEIDENREICH J F, METZ C, et al. Deep learning-based segmentation of the lung in MR-images acquired by a stack-of-spirals trajectory at ultra-short echo-times[J/OL]. BMC Med Imaging, 2021, 21(1): 79 [2022-03-27]. DOI: 10.1186/s12880-021-00608-1.

PREV Application and progress of advanced MRI techniques in differentiating malignant from benign parotid gland tumors
NEXT Research progress of radiomics in bladder cancer

Tel & Fax: +8610-67113815    E-mail: