Share this content in WeChat
Research progress of magnetic resonance imaging in the identification and evaluation of ischemic penumbra in acute cerebral infarction
WANG Yanting  YU Hao 

Cite this article as: WANG Y T, YU H. Research progress of magnetic resonance imaging in the identification and evaluation of ischemic penumbra in acute cerebral infarction[J]. Chin J Magn Reson Imaging, 2023, 14(1): 161-165. DOI:10.12015/issn.1674-8034.2023.01.030.

[Abstract] Acute ischemic stroke (AIS), also known as acute cerebral infarction, is one of the most common type of stroke in China, with high mortality and disability rate. As the target of reperfusion therapy for acute cerebral infarction, the early and accurate identification of ischemic penumbra is of great significance for clinicians to make reasonable treatment plan and prognosis evaluation. In recent years, a variety of mismatched models based on MRI sequences have studied how to identify the ischemic penumbra early and accurately from the perspectives of hemodynamics, collateral circulation and metabolism. This article reviews the research progress of these models in the evaluation of ischemic penumbra, aiming to provide directions for future research.
[Keywords] acute cerebral infarction;ischemic penumbra;magnetic resonance imaging;perfusion weighted imaging;susceptibility weighted imaging;amide proton transfer imaging

WANG Yanting1   YU Hao2*  

1 Clinical Medical College of Jining Medical University, Jining 272013, China

2 Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining 272029, China

Corresponding author: Yu H, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82001805); Doctoral Research Foundation of Affiliated Hospital of Jining Medical Universitiy (No. 2018-BS-010).
Received  2022-05-10
Accepted  2022-12-12
DOI: 10.12015/issn.1674-8034.2023.01.030
Cite this article as: WANG Y T, YU H. Research progress of magnetic resonance imaging in the identification and evaluation of ischemic penumbra in acute cerebral infarction[J]. Chin J Magn Reson Imaging, 2023, 14(1): 161-165. DOI:10.12015/issn.1674-8034.2023.01.030.

HOLLIST M, MORGAN L, CABATBAT R, et al. Acute Stroke Management: Overview and Recent Updates[J]. Aging Dis, 2021, 12(4): 1000-1009. DOI: 10.14336/AD.2021.0311.
GU H, YANG X, WANG C, et al. Clinical Characteristics, Management, and In-Hospital Outcomes in Patients With Stroke or Transient Ischemic Attack in China[J/OL]. JAMA Netw Open, 2021, 4(8): e2120745 [2022-05-10]. DOI: 10.1001/jamanetworkopen.2021.20745.
ASTRUP J, SIESJO B K, SYMON L. Thresholds in cerebral ischemia-the ischemic penumbra[J]. Stroke, 1981, 12(6): 723-725. DOI: 10.1161/01.str.12.6.723.
DANG C, LU J, SONG H Q, et al. Chinese expert consensus on clinical evaluation and treatment of ischemic penumbra of acute cerebral infarction[J]. Chin J Nerv Ment Dis, 2021, 47(6): 324-335. DOI: 10.3969/j.issn.1002-0152.2021.06.002.
YANG S, LIU R. Four Decades of Ischemic Penumbra and Its Implication for Ischemic Stroke[J]. Transl Stroke Res, 2021, 12(6): 937-945. DOI: 10.1007/s12975-021-00916-2.
BENZAKOUN J, DESLYS M A, Legrand L, et al. Synthetic FLAIR as a Substitute for FLAIR Sequence in Acute Ischemic Stroke[J]. Radiology, 2022, 303(1): 153-159. DOI: 10.1148/radiol.211394.
CHENG B, PINNSCHMIDT H, KÖNIGSBERG A, et al. Estimating nocturnal stroke onset times by magnetic resonance imaging in the WAKE-UP trial[J]. Int J Stroke, 2022, 17(3): 323-330. DOI: 10.1177/17474930211059608.
CAO S, DONG H. Predictive value of DWI-FLAIR Mismatch in patients with Ischemic Stroke and receiving Endovascular treatment beyond Time Window[J]. Pak J Med Sci, 2021, 37(2): 466-471. DOI: 10.12669/pjms.37.2.3293.
BERGE E, WHITELEY W, AUDEBERT H, et al. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke[J/OL]. Eur Stroke J, 2021, 6(1): I-LXII [2022-05-10]. DOI: 10.1177/2396987321989865.
REGENHARDT R W, BRETZNER M, ZANON Z M, et al. Radiomic signature of DWI-FLAIR mismatch in large vessel occlusion stroke[J]. J Neuroimaging, 2022, 32(1): 63-67. DOI: 10.1111/jon.12928.
ZENG L, CHEN J, LIAO H, et al. Fluid-Attenuated Inversion Recovery Vascular Hyperintensity in Cerebrovascular Disease: A Review for Radiologists and Clinicians[J/OL]. Front Aging Neurosci, 2021, 13: 790626 [2022-05-10]. DOI: 10.3389/fnagi.2021.790626.
LEE K Y, KIM J W, PARK M, et al. Interpretation of fluid-attenuated inversion recovery vascular hyperintensity in stroke[J]. J Neuroradiol, 2022, 49(3): 258-266. DOI: 10.1016/j.neurad.2021.01.009.
LEGRAND L, TISSERAND M, TURC G, et al. Do FLAIR Vascular Hyperintensities beyond the DWI Lesion Represent the Ischemic Penumbra?[J]. AJNR Am J Neuroradiol, 2015, 36(2): 269-274. DOI: 10.3174/ajnr.A4088.
LEGRAND L, TURC G, EDJLALI M, et al. Benefit from revascularization after thrombectomy according to FLAIR vascular hyperintensities-DWI mismatch[J]. Eur Radiol, 2019, 29(10): 5567-5576. DOI: 10.1007/s00330-019-06094-y.
WANG Y, ZHOU Z, DING S. FLAIR vascular hyperintensity-DWI mismatch most likely to benefit from recanalization and good outcome after stroke[J/OL]. Medicine, 2020, 99(2): e18665 [2022-05-10]. DOI: 10.1097/MD.0000000000018665.
LANSBERG M G, THIJS V N, BAMMER R, et al. The MRA-DWI mismatch identifies patients with stroke who are likely to benefit from reperfusion[J]. Stroke, 2008, 39(9): 2491-2496. DOI: 10.1161/STROKEAHA.107.508572.
DEGUCHI I, DEMBO T, YOSHIMURA S, et al. Relationship between magnetic resonance angiography-diffusion-weighted imaging mismatch and clinical outcome in endovascular treatment for acute ischemic stroke: subgroup analysis of the Recovery by Endovascular Salvage for Cerebral Ultra-acute Embolism--Japan Registry[J]. J Stroke Cerebrovasc Dis, 2014, 23(6): 1471-1476. DOI: 10.1016/j.jstrokecerebrovasdis.2013.12.053.
FU Z Y, WANG Z Z, SUN X H. The value of magnetic resonance angiography diffusion weighted imaging mismatch in predicting ischemic penumbra of acute posterior circulation cerebral infarction with basilar artery occlusion[J] Chin J Cerebrovasc Dis, 2019, 16 (11): 587-592. DOI: 10.3969/j.issn.1672-5921.2019.11.005.
ALBERS G W, MARKS M P, KEMP S, et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging[J]. N Engl J Med, 2018, 378(8): 708-718. DOI: 10.1056/NEJMoa1713973.
CHEUNG J, DOERR M, HU R, et al. Refined Ischemic Penumbra Imaging with Tissue pH and Diffusion Kurtosis Magnetic Resonance Imaging[J]. Transl Stroke Res, 2021, 12(5): 742-753. DOI: 10.1007/s12975-020-00868-z.
KIDWELL C S, WINTERMARK M, DE SILVA D A, et al. Multiparametric MRI and CT models of infarct core and favorable penumbral imaging patterns in acute ischemic stroke[J]. Stroke, 2013, 44(1): 73-79. DOI: 10.1161/STROKEAHA.112.670034.
FALK DELGADO A, VAN WESTEN D, NILSSON M, et al. Diagnostic value of alternative techniques to gadolinium-based contrast agents in MR neuroimaging—a comprehensive overview[J/OL]. Insights Imaging, 2019, 10(1): 84 [2022-05-10]. DOI: 10.1186/s13244-019-0771-1.
CHAZOT A, BARRAT J, GAHA M, et al. Brain MRIs make up the bulk of the gadolinium footprint in medical imaging[J]. J Neuroradiol, 2020, 47(4): 259-265. DOI: 10.1016/j.neurad.2020.03.004.
QU Y, KONG D, WEN H, et al. Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI[J]. Eur Radiol, 2022, 32(5): 2976-2987. DOI: 10.1007/s00330-021-08406-7.
GOPINATH G, ASLAM M, ANUSHA P. Role of Magnetic Resonance Perfusion Imaging in Acute Stroke: Arterial Spin Labeling Versus Dynamic Susceptibility Contrast-Enhanced Perfusion[J/OL]. Cureus, 2022, 14(3) : e23625 [2022-05-10]. DOI: 10.7759/cureus.23625.
LIU J, LIN C, MINUTI A, et al. Arterial spin labeling compared to dynamic susceptibility contrast MR perfusion imaging for assessment of ischemic penumbra: A systematic review[J]. J Neuroimaging, 2021, 31(6): 1067-1076. DOI: 10.1111/jon.12913.
NIIBO T, OHTA H, YONENAGA K, et al. Arterial spin-labeled perfusion imaging to predict mismatch in acute ischemic stroke[J]. Stroke, 2013, 44(9): 2601-2603. DOI: 10.1161/strokeaha.113.002097.
KOHNO N, OKADA K, YAMAGATA S, et al. Distinctive Patterns of Three-Dimensional Arterial Spin-Labeled Perfusion Magnetic Resonance Imaging in Subtypes of Acute Ischemic Stroke[J]. J Stroke Cerebrovasc Dis, 2016, 25(7): 1807-1812. DOI: 10.1016/j.jstrokecerebrovasdis.2016.03.035.
HOU C, HOU S S, ZHANG J, et al. Application progress of arterial spin labeling technique in acute cerebral infarction[J]. J Molecular Imaging, 2020, 43(4): 563-567. DOI: 10.12122/j.issn.1674-4500.2020.04.02.
HU X N, YUAN T, LIU W J, et al. Factors influencing prominent venous sign in acute ischemic stroke: current study status[J]. Int J Med Radiol, 2021, 44(2): 152-156. DOI: 10.19300/j.2021.Z18105.
LI Z, BAI X, GAO P, et al. Changes of prominent vessel sign and susceptibility vessel sign in acute ischemic stroke patients with and without successful recanalization: a study based on susceptibility weighted images[J]. Neurol Res, 2022, 44(7): 583-590. DOI: 10.1080/01616412.2021.2024729.
XU Z, TONG Z, DUAN Y, et al. Diffusion- and Susceptibility Weighted Imaging Mismatch Correlates With Collateral Circulation and Prognosis After Middle Cerebral Artery M1-Segment Occlusion[J/OL]. Front Neurol, 2021, 12: 660529 [2022-05-10]. DOI: 10.3389/fneur.2021.660529.
JIANG H F, ZHANG Y X, PANG J X, et al. Susceptibility-diffusion mismatch correlated with leptomeningeal collateralization in large vessel occlusion stroke[J/OL]. J Int Med Res, 2021, 49(5): 3000605211013179 [2022-05-10]. DOI: 10.1177/03000605211013179.
WANG Y, LI Z, HUANG W, et al. The Value of Susceptibility-Weighted Imaging (SWI) in Evaluating the Ischemic Penumbra of Patients with Acute Cerebral Ischemic Stroke[J]. Neuropsychiatr Dis Treat, 2021, 17: 1745-1750. DOI: 10.2147/NDT.S301870.
LU X, MENG L, ZHOU Y, et al. Quantitative susceptibility-weighted imaging may be an accurate method for determining stroke hypoperfusion and hypoxia of penumbra[J]. Eur Radiol, 2021, 31(8): 6323-6333. DOI: 10.1007/s00330-020-07485-2.
JIANG H F, ZHANG Y Q, PANG J X, et al. Factors associated with prominent vessel sign on susceptibility-weighted imaging in acute ischemic stroke[J/OL]. Sci Rep, 2021, 11(1): 5641 [2022-05-10]. DOI: 10.1038/s41598-021-84269-8.
ZOLLNER J P, HATTINGEN E, SINGER O C, et al. Changes of pH and energy state in subacute human ischemia assessed by multinuclear magnetic resonance spectroscopy[J]. Stroke, 2015, 46(2): 441-446. DOI: 10.1161/STROKEAHA.114.007896.
LI Y, WANG T, ZHANG T, et al. Fast high-resolution metabolic imaging of acute stroke with 3D magnetic resonance spectroscopy[J]. Brain, 2020, 143(11): 3225-3233. DOI: 10.1093/brain/awaa264.
DEUCHAR G A, BRENNAN D, HOLMES W M, et al. Perfluorocarbon Enhanced Glasgow Oxygen Level Dependent (GOLD) Magnetic Resonance Metabolic Imaging Identifies the Penumbra Following Acute Ischemic Stroke[J]. Theranostics, 2018, 8(6): 1706-1722. DOI: 10.7150/thno.21685.
HU Y, WU J, ZHANG X, et al. Effects of Paired Associative Stimulation on Metabolites in Ischemia Stroke Rats Model as Studied by Nuclear Magnetic Resonance Spectrum[J]. Neurochem Res, 2021, 46(9): 2495-2504. DOI: 10.1007/s11064-021-03388-w.
ZHOU J, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
SUN P Z, ZHOU J, SUN W, et al. Detection of the ischemic penumbra using pH-weighted MRI[J]. J Cereb Blood Flow Metab, 2007, 27(6): 1129-1136. DOI: 10.1038/sj.jcbfm.9600424.
WANG E, WU Y, CHEUNG J S, et al. Mapping tissue pH in an experimental model of acute stroke-Determination of graded regional tissue pH changes with non-invasive quantitative amide proton transfer MRI[J]. NeuroImage, 2019, 191: 610-617. DOI: 10.1016/j.neuroimage.2019.02.022.
TIETZE A, BLICHER J, MIKKELSEN I K, et al. Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI[J]. NMR Biomed, 2014, 27(2): 163-174. DOI: 10.1002/nbm.3048.
HARSTON G W, TEE Y K, BLOCKLEY N, et al. Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging[J]. Brain, 2015, 138(1): 36-42. DOI: 10.1093/brain/awu374.
TAN Y F. Use of rotating frame (Tlp) and apparent diffusion coefficient (ADC) obtained from MRI with T1 relaxation time to estimate cerebralischemia evolution & preliminary research of ischemic penumbra insubacute stroke patients combinatinguse of amide proton transfer (APT) with arterial spin-labeling (ASL)[D]. Guangzhou: South Med Univ, 2018, 9: 1-119.
JIN T, KIM S G. Role of chemical exchange on the relayed nuclear Overhauser enhancement signal in saturation transfer MRI[J]. Magn Reson Med, 2022, 87(1): 365-376. DOI: 10.1002/mrm.28961.
BOUTS M J, TIEBOSCH I A, VAN DER TOORN A, et al. Early identification of potentially salvageable tissue with MRI-based predictive algorithms after experimental ischemic stroke[J]. J Cereb Blood Flow Metab, 2013, 33(7): 1075-1082. DOI: 10.1038/jcbfm.2013.51.
KUO D P, KUO P C, CHEN Y C, et al. Machine learning-based segmentation of ischemic penumbra by using diffusion tensor metrics in a rat model[J/OL]. J Biomed Sci, 2020, 27(1): 80 [2022-10-11]. DOI: 10.1186/s12929-020-00672-9.
ZHANG R, ZHU L, ZHU Z, et al. Apparent diffusion coefficient map based radiomics model in identifying the ischemic penumbra in acute ischemic stroke[J]. Ann Palliat Med, 2020, 9(5): 2684-2692. DOI: 10.21037/apm-20-1142.

PREV Research progress of high resolution magnetic resonance angiography in ischemic stroke
NEXT Research progress of deep learning brain tumor MRI image classification

Tel & Fax: +8610-67113815    E-mail: