Share this content in WeChat
Technical Article
The value of SEMAC-VAT imaging in the post-operative imaging of spine reconstruction surgery with 3D-printed vertebral body
ZHAO Qiang  SUN Xingwen  ZHANG Lihua  YE Kai  HAN Songbo  OUYANG Hanqiang  YUAN Huishu 

Cite this article as: ZHAO Q, SUN X W, ZHANG L H, et al. The value of SEMAC-VAT imaging in the post-operative imaging of spine reconstruction surgery with 3D-printed vertebral body[J]. Chin J Magn Reson Imaging, 2023, 14(1): 130-135. DOI:10.12015/issn.1674-8034.2023.01.023.

[Abstract] Objective To explore the value of slice-encoding metal artifact corrections-view-angle tilting (SEMAC-VAT) sequences in the post-operative imaging of spine reconstruction surgery with a 3D-printed vertebral body (VB).Materials and Methods Seventeen patients with 3D-printed VB underwent spinal MRI with T2 turbo-spin-echo (TSE) and T2-weighted SEMAC-VAT sequences. The evaluation was performed by two musculoskeletal radiologists by assessing the artifact size, the signal-to-noise ratio (SNR), and the visibility of the critical anatomical structures close to metal implants. Paired t tests, independent t tests, and Wilcoxon signed-rank tests were used for comparisons, and Kappa values were used for interobserver agreement.Results SEMAC-VAT images demonstrated significantly reduced longitudinal [(4.8±6.3) mm vs. (15.4±14.5) mm, P<0.01] and anterior-posterior [(3.1±7.5) mm vs. (9.0±9.1) mm, P<0.01] diameters of the artifacts and improved visibility of the periprosthetic anatomical structures compared with conventional TSE images. The visibility of the spinal canal is comparable between TSE and SEMAC-VAT images. SNRs of the periprosthetic anatomical structures in SEMAC-VAT images are significantly lower than in TSE images.Conclusions SEMAC-VAT imaging could reduce the size of the metal artifact and improve the visibility of most periprosthetic anatomical structures in patients after spine reconstruction surgery using a 3D-printed VB. SEMAC-VAT imaging may thus improve the diagnostic efficacy of post-operative imaging of spine reconstruction surgery with a 3D-printed VB.
[Keywords] malignancy tumor of spine;vertebrectomy;artificial vertebral body;artifact;magnetic resonance imaging

ZHAO Qiang1   SUN Xingwen1   ZHANG Lihua1   YE Kai1   HAN Songbo1   OUYANG Hanqiang2   YUAN Huishu1*  

1 Department of Radiology, Peking University Third Hospital, Beijing 100191, China

2 Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China

Corresponding author: Yuan HS, E-mail:

Conflicts of interest   None.

Received  2022-03-08
Accepted  2022-11-29
DOI: 10.12015/issn.1674-8034.2023.01.023
Cite this article as: ZHAO Q, SUN X W, ZHANG L H, et al. The value of SEMAC-VAT imaging in the post-operative imaging of spine reconstruction surgery with 3D-printed vertebral body[J]. Chin J Magn Reson Imaging, 2023, 14(1): 130-135. DOI:10.12015/issn.1674-8034.2023.01.023.

CHOI D, BILSKY M, FEHLINGS M, et al. Spine oncology-metastatic spine tumors[J]. Neurosurgery, 2017, 80(3S): S131-S137. DOI: 10.1093/neuros/nyw084.
SHAPIRO M. Imaging of the spine at 3 tesla[J]. Neuroimaging Clin N Am, 2012, 22(2): 315-341. DOI: 10.1016/j.nic.2012.03.001.
RUTHERFORD E E, TARPLETT L J, DAVIES E M, et al. Lumbar spine fusion and stabilization: hardware, techniques, and imaging appearances[J]. Radiographics, 2007, 27(6): 1737-1749. DOI: 10.1148/rg.276065205.
PARK C, LEE E, YEO Y, et al. Spine MR images in patients with pedicle screw fixation: comparison of conventional and SEMAC-VAT sequences at 1.5 T[J]. Magn Reson Imaging, 2018, 54: 63-70. DOI: 10.1016/j.mri.2018.08.002.
HAN S B, YOON Y C, KWON J W. Comparison study between conventional sequence and slice-encoding metal artifact correction (semac) in the diagnosis of postoperative complications in patients receiving lumbar inter-body fusion and pedicle screw fixation surgery[J/OL]. PLoS One, 2016, 11(10): e0163745 [2022-03-10]. DOI: 10.1371/journal.pone.0163745.
DING L, ZHANG F L, ZHANG Z H, et al. Single energy metal artifact reduction technique in the evaluation of postoperative tumor endoprostheses in the knee joint[J]. Chin J Radiol, 2017, 51(7): 515-518. DOI: 10.3760/cma.j.issn.1005-1201.2017.07.008.
HUNN S A M, KOEFMAN A J, HUNN A W M. 3D-printed titanium prosthetic reconstruction of the C2 vertebra: techniques and outcomes of three consecutive cases[J]. Spine, 2020, 45(10): 667-672. DOI: 10.1097/BRS.0000000000003360.
SHEHA E D, GANDHI S D, COLMAN M W. 3d printing in spine surgery[J/OL]. Ann Transl Med, 2019, 7(Suppl 5): S164 [2022-03-10]. DOI: 10.21037/atm.2019.08.88.
BURNARD J L, PARR W C H, CHOY W J, et al. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices[J]. Eur Spine J, 2020, 29(6): 1248-1260. DOI: 10.1007/s00586-019-06236-2.
KONISHI T, SHIBUTANI T, OKUDA K, et al. Metal artifact reduction for improving quantitative SPECT/CT imaging[J]. Ann Nucl Med, 2021, 35(3): 291-298. DOI: 10.1007/s12149-020-01560-w.
TANG H, LIN Y B, SUN G Y, et al. A metal artifact reduction scheme in CT by a Poisson fusion sinogram based postprocessing method[J]. J Xray Sci Technol, 2021, 29(2): 245-257. DOI: 10.3233/XST-200799.
LEE Y H, LIM D, KIM E, et al. Usefulness of slice encoding for metal artifact correction (SEMAC) for reducing metallic artifacts in 3-T MRI[J]. Magn Reson Imaging, 2013, 31(5): 703-706. DOI: 10.1016/j.mri.2012.11.004.
BRENDLIN A S, REINERT C P, BAUMGARTNER H, et al. CT in patients with external fixation for complex lower extremity fractures: impact of iterative metal artifact reduction techniques on metal artifact burden and subjective quality[J]. AJR Am J Roentgenol, 2022, 218(2): 300-309. DOI: 10.2214/AJR.21.26442.
THIPPESWAMY P B, NEDUNCHELIAN M, RAJASEKARAN R B, et al. Updates in postoperative imaging modalities following musculoskeletal surgery[J/OL]. J Clin Orthop Trauma, 2021, 22: 101616 [2022-03-10]. DOI: 10.1016/j.jcot.2021.101616.
SOLLMANN N, MEI K, RIEDERER I, et al. Low-dose MDCT of patients with spinal instrumentation using sparse sampling: impact on metal artifacts[J]. AJR Am J Roentgenol, 2021, 216(5): 1308-1317. DOI: 10.2214/AJR.20.23083.
FUJIWARA Y, SASAKI T, MUTO Y, et al. Multiacquisition variable-resonance image combination selective can improve image quality and reproducibility for metallic implants in the lumbar spine[J]. Acta Med Okayama, 2021, 75(2): 187-197. DOI: 10.18926/AMO/61897.
BARRETO I, PEPIN E, DAVIS I, et al. Comparison of metal artifact reduction using single-energy CT and dual-energy CT with various metallic implants in cadavers[J/OL]. Eur J Radiol, 2020, 133: 109357 [2022-03-10]. DOI: 10.1016/j.ejrad.2020.109357.
WANDERMAN N, GLASSMAN S D, MKOROMBINDO T, et al. Evaluation of bone mineral density after instrumented lumbar fusion with computed tomography[J]. Spine J, 2022, 22(6): 951-956. DOI: 10.1016/j.spinee.2022.02.007.
KIM J K, KIM Y J, LEE S, et al. Metallic artifact reduction of multiacquisition with variable resonance image combination selective-short tau inversion recovery for postoperative cervical spine with artificial disk replacement: a preliminary study[J]. J Comput Assist Tomogr, 2022, 46(2): 274-281. DOI: 10.1097/RCT.0000000000001266.
YANG R J, LIU C S, LI L, et al. 3-T MRI in patients who received anterior cervical discectomy and fusion surgery with MAVRIC SL IR sequence: a feasibility study[J]. Comb Chem High Throughput Screen, 2022, 25(6): 1024-1030. DOI: 10.2174/1386207324666210322125827.
XIN C, LIU H, LI S, et al. Using semac at 3 T MR to evaluate spinal metallic implants and peripheral soft tissue lesions[J/OL]. Medicine (Baltimore), 2020, 99(25): e20139 [2022-03-10]. DOI: 10.1097/MD.0000000000020139.
KHODARAHMI I, BRINKMANN I M, LIN D J, et al. New-generation low-field magnetic resonance imaging of hip arthroplasty implants using slice encoding for metal artifact correction: first In vitro experience at 0.55 T and comparison with 1.5 T[J]. Invest Radiol, 2022, 57(8): 517-526. DOI: 10.1097/RLI.0000000000000866.
XU N F, WEI F, LIU X G, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma[J]. Spine, 2016, 41(1): E50-E54. DOI: 10.1097/BRS.0000000000001179.
LU W M, PAULY K B, GOLD G E, et al. SEMAC: slice encoding for metal artifact correction in MRI[J]. Magn Reson Med, 2009, 62(1): 66-76. DOI: 10.1002/mrm.21967.
JUNGMANN P M, AGTEN C A, PFIRRMANN C W, et al. Advances in MRI around metal[J]. J Magn Reson Imaging, 2017, 46(4): 972-991. DOI: 10.1002/jmri.25708.
HEINRICH A, REINHOLD M, GÜTTLER F V, et al. MRI following scoliosis surgery? An analysis of implant heating, displacement, torque, and susceptibility artifacts[J]. Eur Radiol, 2021, 31(6): 4298-4307. DOI: 10.1007/s00330-020-07546-6.
HUBER F A, SPRENGEL K, MULLER L, et al. Comparison of different ct metal artifact reduction strategies for standard titanium and carbon-fiber reinforced polymer implants in sheep cadavers[J/OL]. BMC Med Imaging, 2021, 21(1): 29 [2022-03-10]. DOI: 10.1186/s12880-021-00554-y.
KUMAR N, LOPEZ K G, ALATHUR RAMAKRISHNAN S, et al. Evolution of materials for implants in metastatic spine disease till date-Have we found an ideal material?[J]. Radiother Oncol, 2021, 163: 93-104. DOI: 10.1016/j.radonc.2021.08.007.
HAMA Y, TATE E. Metal artifact-free MRI-guided re-irradiation for recurrent spinal metastases from thyroid cancer[J]. Klin Onkol, 2021, 34(5): 401-404. DOI: 10.48095/ccko2021401.
STRONG M J, SANTAROSA J, SULLIVAN T P, et al. Pre- and intraoperative thoracic spine localization techniques: A systematic review[J/OL]. J Neurosurg Spine, 2021: 1-8 [2022-03-10]. DOI: 10.3171/2021.8.SPINE21480.

PREV MRI brain tumor classification based on multi-scale residual network
NEXT Clinical value of a nomogram model based on ADC values within 1 cm around the tumor for predicting the postoperative progression of glioma

Tel & Fax: +8610-67113815    E-mail: