Share this content in WeChat
Special Focus
From research to clinic: The huge potential about application of magnetic resonance imaging in neurodegenerative disease
TIAN Yaotian  LI Chunmei  CHEN Min 

Cite this article as: TIAN Y T, LI C M, CHEN M. From research to clinic: The huge potential about application of magnetic resonance imaging in neurodegenerative disease[J]. Chin J Magn Reson Imaging, 2023, 14(1): 1-5, 19. DOI:10.12015/issn.1674-8034.2023.01.001.

[Abstract] The continuous advances in MRI technology can provide new insights into brain about morphological structure, perfusion, white matter and axonal microstructure, neuronal activity and multiple metabolite loads, which has led to its widely implementation in neurodegenerative diseases. This paper reviewed the application and research status of MRI technology in neurodegenerative diseases, delineated its potential pathophysiological mechanisms, emphasized its role in the diagnosis, differentiation and progress prediction of neurodegenerative diseases. Meanwhile, it pointed out the challenges these technologies faced in transforming from scientific research to clinical application, and given the prospect of future development of MRI technology in neurodegenerative diseases.
[Keywords] neurodegenerative diseases;Alzheimer's disease;Parkinson's disease;multisystem atrophy;amyotrophic lateral sclerosis;magnetic resonance imaging;structural magnetic resonance imaging;arterial spin labeling;diffusion tensor imaging;quantitative susceptibility mapping;blood oxygen level dependent;chemical exchange saturation transfer;magnetic resonance spectroscopy;research progress

TIAN Yaotian1, 2   LI Chunmei1, 2   CHEN Min1, 2*  

1 Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China

2 Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China

Corresponding author: Chen M, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071891, 81771826).
Received  2022-09-20
Accepted  2022-12-30
DOI: 10.12015/issn.1674-8034.2023.01.001
Cite this article as: TIAN Y T, LI C M, CHEN M. From research to clinic: The huge potential about application of magnetic resonance imaging in neurodegenerative disease[J]. Chin J Magn Reson Imaging, 2023, 14(1): 1-5, 19. DOI:10.12015/issn.1674-8034.2023.01.001.

HOU Y J, DAN X L, BABBAR M, et al. Ageing as a risk factor for neurodegenerative disease[J]. Nat Rev Neurol, 2019, 15(10): 565-581. DOI: 10.1038/s41582-019-0244-7.
JACK C R, BENNETT D A, BLENNOW K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 535-562. DOI: 10.1016/j.jalz.2018.02.018.
LI M L, JIANG Y C, LI X, et al. Ensemble of convolutional neural networks and multilayer perceptron for the diagnosis of mild cognitive impairment and Alzheimer's disease[J/OL]. Med Phys, 2022 [2022-11-13]. DOI: 10.1002/mp.15985.
CHÉTELAT G. Multimodal neuroimaging in alzheimer's disease: early diagnosis, physiopathological mechanisms, and impact of lifestyle[J]. J Alzheimers Dis, 2018, 64(s1): S199-S211. DOI: 10.3233/JAD-179920.
SARASSO E, AGOSTA F, PIRAMIDE N, et al. Progression of grey and white matter brain damage in Parkinson's disease: a critical review of structural MRI literature[J]. J Neurol, 2021, 268(9): 3144-3179. DOI: 10.1007/s00415-020-09863-8.
CAMARGO A, WANG Z, INITIATIVE A D N. Longitudinal cerebral blood flow changes in normal aging and the alzheimer's disease continuum identified by arterial spin labeling MRI[J]. J Alzheimers Dis, 2021, 81(4): 1727-1735. DOI: 10.3233/JAD-210116.
RANE S, KOH N, OAKLEY J, et al. Arterial spin labeling detects perfusion patterns related to motor symptoms in Parkinson's disease[J]. Parkinsonism Relat Disord, 2020, 76: 21-28. DOI: 10.1016/j.parkreldis.2020.05.014.
SUO X L, GONG Q Y. Application and research progress of DWI technology in central nervous system[J]. Radiol Pract, 2018, 33(2): 210-214. DOI: 10.13609/j.cnki.1000-0313.2018.02.021.
ANDICA C, KAMAGATA K, HATANO T, et al. MR biomarkers of degenerative brain disorders derived from diffusion imaging[J]. J Magn Reson Imaging, 2020, 52(6): 1620-1636. DOI: 10.1002/jmri.27019.
PASTERNAK O, SOCHEN N, GUR Y, et al. Free water elimination and mapping from diffusion MRI[J]. Magn Reson Med, 2009, 62(3): 717-730. DOI: 10.1002/mrm.22055.
KAMIYA K, HORI M, AOKI S. NODDI in clinical research[J/OL]. J Neurosci Methods, 2020, 346: 108908 [2022-11-13]. DOI: 10.1016/j.jneumeth.2020.108908.
WEI Z H, WANG H. Research progress of neurite direction dispersion and density imaging in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2021, 12(4): 103-105. DOI: 10.12015/issn.1674-8034.2021.04.026.
TALWAR P, KUSHWAHA S, CHATURVEDI M, et al. Systematic review of different neuroimaging correlates in mild cognitive impairment and alzheimer's disease[J]. Clin Neuroradiol, 2021, 31(4): 953-967. DOI: 10.1007/s00062-021-01057-7.
WEI X, LUO C Y, LI Q, et al. White matter abnormalities in patients with parkinson's disease: a meta-analysis of diffusion tensor imaging using tract-based spatial statistics[J/OL]. Front Aging Neurosci, 2020, 12: 610962 [2022-11-13]. DOI: 10.3389/fnagi.2020.610962.
FU Y H, ZHOU L C, LI H Y, et al. Adaptive structural changes in the motor cortex and white matter in Parkinson's disease[J/OL]. Acta Neuropathol, 2022, 144(5): 861-879 [2022-11-13]. DOI: 10.1007/s00401-022-02488-3.
OFORI E, DEKOSKY S T, FEBO M, et al. Free-water imaging of the hippocampus is a sensitive marker of Alzheimer's disease[J/OL]. Neuroimage Clin, 2019, 24: 101985 [2022-11-13]. DOI: 10.1016/j.nicl.2019.101985.
OFORI E, KRISMER F, BURCIU R G, et al. Free water improves detection of changes in the substantia nigra in Parkinsonism: a multisite study[J]. Mov Disord, 2017, 32(10): 1457-1464. DOI: 10.1002/mds.27100.
BURCIU R G, OFORI E, ARCHER D B, et al. Progression marker of Parkinson's disease: a 4-year multi-site imaging study[J]. Brain, 2017, 140(8): 2183-2192. DOI: 10.1093/brain/awx146.
GUTTUSO T, BERGSLAND N, HAGEMEIER J, et al. Substantia nigra free water increases longitudinally in parkinson disease[J]. AJNR Am J Neuroradiol, 2018, 39(3): 479-484. DOI: 10.3174/ajnr.A5545.
MITCHELL T, WILKES B J, ARCHER D B, et al. Advanced diffusion imaging to track progression in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy[J/OL]. Neuroimage Clin, 2022, 34: 103022 [2022-11-13]. DOI: 10.1016/j.nicl.2022.103022.
FU X W, SHRESTHA S, SUN M, et al. Microstructural white matter alterations in mild cognitive impairment and alzheimer's disease: study based on neurite orientation dispersion and density imaging (NODDI)[J]. Clin Neuroradiol, 2020, 30(3): 569-579. DOI: 10.1007/s00062-019-00805-0.
LV H, WANG Z, TONG E, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399. DOI: 10.3174/ajnr.A5527.
HOHENFELD C, WERNER C J, REETZ K. Resting-state connectivity in neurodegenerative disorders: is there potential for an imaging biomarker?[J]. Neuroimage Clin, 2018, 18: 849-870. DOI: 10.1016/j.nicl.2018.03.013.
MYERS P S, MCNEELY M E, PICKETT K A, et al. Effects of exercise on gait and motor imagery in people with Parkinson disease and freezing of gait[J]. Parkinsonism Relat Disord, 2018, 53: 89-95. DOI: 10.1016/j.parkreldis.2018.05.006.
NEMCOVA ELFMARKOVA N, GAJDOS M, REKTOROVA I, et al. Neural evidence for defective top-down control of visual processing in Parkinson's and Alzheimer's disease[J]. Neuropsychologia, 2017, 106: 236-244. DOI: 10.1016/j.neuropsychologia.2017.09.034.
KIM D, HUGHES T M, LIPFORD M E, et al. Relationship between Ccerebrovascular reactivity and cognition among people with risk of cognitive decline[J/OL]. Front Physiol, 2021, 12: 645342 [2022-11-13]. DOI: 10.3389/fphys.2021.645342.
NAGATSU T, NAKASHIMA A, WATANABE H, et al. Neuromelanin in parkinson's disease: tyrosine hydroxylase and tyrosinase[J/OL]. Int J Mol Sci, 2022, 23(8): 4176 [2022-11-13]. DOI: 10.3390/ijms23084176.
LATIF S, JAHANGEER M, MAKNOON RAZIA D, et al. Dopamine in parkinson's disease[J]. Clin Chimica Acta, 2021, 522: 114-126. DOI: 10.1016/j.cca.2021.08.009.
PAVESE N, TAI Y F. Nigrosome imaging and neuromelanin sensitive MRI in diagnostic evaluation of Parkinsonism[J]. Mov Disord Clin Pract, 2018, 5(2): 131-140. DOI: 10.1002/mdc3.12590.
OTANI R T V, YAMAMOTO J Y S, NUNES D M, et al. Magnetic resonance and dopamine transporter imaging for the diagnosis of Parkinson´s disease: a narrative review[J]. Arq Neuropsiquiatr, 2022, 80(5Suppl 1): 116-125. DOI: 10.1590/0004-282X-ANP-2022-S130.
GUO Y, WANG J. Research progress of magnetic resonance imaging technology of neuromelanin in Parkinson's disease[J]. Radiol Pract, 2022, 37(4): 525-528. DOI: 10.13609/j.cnki.1000-0313.2022.04.020.
HE N Y, CHEN Y S, LEWITT P A, et al. Application of Neuromelanin MR Imaging in Parkinson Disease [J/OL]. J Magn Reson Imaging, 2022 [2022-11-13]. DOI: 10.1002/jmri.28414.
TAKAHASHI H, WATANABE Y, TANAKA H, et al. Quantifying changes in nigrosomes using quantitative susceptibility mapping and neuromelanin imaging for the diagnosis of early-stage Parkinson's disease[J/OL]. Br J Radiol, 2018, 91(1086): 20180037 [2022-11-13]. DOI: 10.1259/bjr.20180037.
SCHWARZ S T, XING Y, TOMAR P, et al. In vivo assessment of brainstem depigmentation in parkinson disease: potential as a severity marker for multicenter studies[J]. Radiology, 2017, 283(3): 789-798. DOI: 10.1148/radiol.2016160662.
HE N Y, GHASSABAN K, HUANG P, et al. Imaging iron and neuromelanin simultaneously using a single 3D gradient echo magnetization transfer sequence: combining neuromelanin, iron and the nigrosome-1 sign as complementary imaging biomarkers in early stage Parkinson's disease[J/OL]. Neuroimage, 2021, 230: 117810 [2022-11-13]. DOI: 10.1016/j.neuroimage.2021.117810.
CHENG Z H, HE N Y, HUANG P, et al. Imaging the Nigrosome 1 in the substantia nigra using susceptibility weighted imaging and quantitative susceptibility mapping: an application to Parkinson's disease[J/OL]. Neuroimage Clin, 2020, 25: 102103 [2022-11-13]. DOI: 10.1016/j.nicl.2019.102103.
MITCHELL T, LEHÉRICY S, CHIU S Y, et al. Emerging neuroimaging biomarkers across disease stage in parkinson disease: a review[J]. JAMA Neurol, 2021, 78(10): 1262-1272. DOI: 10.1001/jamaneurol.2021.1312.
RAVANFAR P, LOI S M, SYEDA W T, et al. Systematic Review: quantitative susceptibility mapping (QSM) of brain iron profile in neurodegenerative diseases[J/OL]. Front Neurosci, 2021, 15: 618435 [2022-11-13]. DOI: 10.3389/fnins.2021.618435.
UCHIDA Y, KAN H, SAKURAI K, et al. Voxel-based quantitative susceptibility mapping in Parkinson's disease with mild cognitive impairment[J]. Mov Disord, 2019, 34(8): 1164-1173. DOI: 10.1002/mds.27717.
SHAMS S, FÄLLMAR D, SCHWARZ S, et al. MRI of the swallow tail sign: a useful marker in the diagnosis of lewy body dementia?[J]. AJNR Am J Neuroradiol, 2017, 38(9): 1737-1741. DOI: 10.3174/ajnr.A5274.
LIU X L, WANG N, CHEN C, et al. Swallow tail sign on susceptibility map-weighted imaging (SMWI) for disease diagnosing and severity evaluating in Parkinsonism[J]. Acta Radiol, 2021, 62(2): 234-242. DOI: 10.1177/0284185120920793.
SJÖSTRÖM H, SUROVA Y, NILSSON M, et al. Mapping of apparent susceptibility yields promising diagnostic separation of progressive supranuclear palsy from other causes of Parkinsonism[J/OL]. Sci Rep, 2019, 9(1): 6079 [2022-11-13]. DOI: 10.1038/s41598-019-42565-4.
WELLS J A, O'CALLAGHAN J M, HOLMES H E, et al. In vivo imaging of tau pathology using multi-parametric quantitative MRI[J]. Neuroimage, 2015, 111: 369-378. DOI: 10.1016/j.neuroimage.2015.02.023.
WANG R, CHEN P, SHEN Z, et al. Brain amide proton transfer imaging of rat with Alzheimer's disease using saturation with frequency alternating RF irradiation method[J/OL]. Front Aging Neurosci, 2019, 11: 217 [2022-11-13].
LI C M, PENG S, WANG R, et al. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla[J]. Eur Radiol, 2014, 24(10): 2631-2639. DOI: 10.1007/s00330-014-3241-7.
LI S, CHAN P, LI C, et al. Changes of amide proton transfer imaging in multiple system atrophy parkinsonism type[J/OL]. Front Aging Neurosci, 2020, 12: 572421 [2022-11-13]. DOI: 10.3389/fnagi.2020.572421.
MITOLO M, STANZANI-MASERATI M, CAPELLARI S, et al. Predicting conversion from mild cognitive impairment to Alzheimer's disease using brain 1H-MRS and volumetric changes: a two- year retrospective follow-up study[J/OL]. Neuroimage Clin, 2019, 23: 101843 [2022-11-13]. DOI: 10.1016/j.nicl.2019.101843.
SONG T, SONG X P, ZHU C, et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: a meta-analysis of in vivo magnetic resonance spectroscopy studies[J/OL]. Ageing Res Rev, 2021, 72: 101503 [2022-11-13]. DOI: 10.1016/j.arr.2021.101503.
GOLAN H, VOLKOV O, SHALOM E. Nuclear imaging in Parkinson's disease: the past, the present, and the future[J/OL]. J Neurol Sci, 2022, 436: 120220 [2022-11-13]. DOI: 10.1016/j.jns.2022.120220.
GOZDAS E, HINKLEY L, FINGERHUT H, et al. 1H-MRS neurometabolites and associations with neurite microstructures and cognitive functions in amnestic mild cognitive impairment[J/OL]. Neuroimage Clin, 2022, 36: 103159 [2022-11-13]. DOI: 10.1016/j.nicl.2022.103159
ANDOH M, KOYAMA R. Microglia and GABA: Diverse functions of microglia beyond GABA-receiving cells[J/OL]. Neurosci Res, 2022 [2022-11-13]. DOI: 10.1016/j.neures.2022.09.008.
HONE-BLANCHET A, BOHSALI A, KRISHNAMURTHY L C, et al. Frontal metabolites and alzheimer's disease biomarkers in healthy older women and women diagnosed with mild cognitive impairment[J]. J Alzheimers Dis, 2022, 87(3): 1131-1141. DOI: 10.3233/JAD-215431.
HONE-BLANCHET A, BOHSALI A, KRISHNAMURTHY L C, et al. Relationships between frontal metabolites and Alzheimer's disease biomarkers in cognitively normal older adults[J]. Neurobiol Aging, 2022, 109: 22-30. DOI: 10.1016/j.neurobiolaging.2021.09.016.
DELLI PIZZI S, FRANCIOTTI R, FERRETTI A, et al. High γ-aminobutyric acid content within the medial prefrontal cortex is a functional signature of somatic symptoms disorder in patients with parkinson's disease[J]. Mov Disord, 2020, 35(12): 2184-2192. DOI: 10.1002/mds.28221.
DELLI PIZZI S, FRANCIOTTI R, CHIACCHIARETTA P, et al. Altered Medial Prefrontal Connectivity in Parkinson's Disease Patients with Somatic Symptoms[J/OL]. Mov Disord, 2022, 37(11): 2226-2235 [2022-11-13]. DOI: 10.1002/mds.29187.

PREV Mobile techniques in medical imaging: Challenges and advances
NEXT Cerebral perfusion in Parkinson,s disease with depression: An arterial spin labeling MRI study

Tel & Fax: +8610-67113815    E-mail: