Share this content in WeChat
Mobile techniques in medical imaging: Challenges and advances
SUN Xinle  CUI Yong  ZHAI Tongtong  CAO Shuailong  WU Yaping  WANG Meiyun  LIN Yusong 

Cite this article as: Sun XL, Cui Y, Zhai TT, et al. Mobile techniques in medical imaging: Challenges and advances[J]. Chin J Magn Reson Imaging, 2022, 13(12): 163-170. DOI:10.12015/issn.1674-8034.2022.12.031.

[Abstract] As an interdisciplinary field of mobile computing and medical imaging, mobile medical imaging has attracted more and more attention from both academia and industry. By leveraging of mobile computing, wireless network, cloud computing and other technologies, mobile medical imaging has expanded the usability and coverage of traditional medical imaging applications, which has a good potential at medical image display, analysis, processing and diagnosis. Due to the complex mobile network environment, limited resources of mobile devices, large amount of medical image data and other factors, mobile medical imaging still faces many challenges. The research progress of key technologies of mobile medical imaging into six categories was classified in this paper, including transmission, storage, display, processing, data security and artificial intelligence applications. Meanwhile, based on the analysis of the current work, the future of mobile medical imaging was discussed.
[Keywords] medical imaging;mobile computing;mobile devices;medical image processing;magnetic resonance imaging;data security;artificial intelligence

SUN Xinle1, 2   CUI Yong3   ZHAI Tongtong1, 2   CAO Shuailong1, 2   WU Yaping4   WANG Meiyun4   LIN Yusong1, 2, 5*  

1 School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China

2 Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China

3 School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

4 Department of Radiology, Henan Provincial People's Hospital, Zhengzhou 450003, China

5 Hanwei IoT Institute, Zhengzhou University, Zhengzhou 450002, China

Lin YS, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81772009).
Received  2022-10-27
Accepted  2022-12-11
DOI: 10.12015/issn.1674-8034.2022.12.031
Cite this article as: Sun XL, Cui Y, Zhai TT, et al. Mobile techniques in medical imaging: Challenges and advances[J]. Chin J Magn Reson Imaging, 2022, 13(12): 163-170. DOI:10.12015/issn.1674-8034.2022.12.031.

Mohindru G, Mondal K, Banka H. Internet of Things and data analytics: A current review[J/OL]. WIREs Data Mining Knowl Discov, 2020, 10(3): e1341 [2022-10-26]. DOI: 10.1002/widm.1341.
Ma X, Wang ZE, Zhou S, et al. Intelligent healthcare systems assisted by data analytics and mobile computing[J/OL]. Wirel Commun Mob Comput, 2018, 2018: 3928080 [2022-10-26]. DOI: 10.1155/2018/3928080.
Khan ZF, Alotaibi SR. Applications of artificial intelligence and big data analytics in m-health: a healthcare system perspective[J/OL]. J Healthc Eng, 2020, 2020: 8894694 [2022-10-26]. DOI: 10.1155/2020/8894694.
Cewe P, Burström G, Drnasin I, et al. Evaluation of a novel teleradiology technology for image-based distant consultations: applications in neurosurgery[J/OL]. Diagnostics (Basel), 2021, 11(8): 1413 [2022-10-26]. DOI: 10.3390/diagnostics11081413.
Bird P. Imaging in the mobile domain[J]. Rheum Dis Clin North Am, 2019, 45(2): 291-302. DOI: 10.1016/j.rdc.2019.01.002.
Tahir MY, Mars M, Scott RE. A review of teleradiology in Africa-towards mobile teleradiology in Nigeria[J/OL]. SA J Radiol, 2022, 26(1): 2257 [2022-10-26]., DOI: 10.4102/sajr.v26i1.2257.
Hao HL, Hui D, Lau D. Material advancement in technological development for the 5G wireless communications[J]. Nanotechnol Rev, 2020, 9(1): 683-699. DOI: 10.1515/ntrev-2020-0054.
Berger-Groch J, Keitsch M, Reiter A, et al. The use of mobile applications for the diagnosis and treatment of tumors in orthopaedic oncology - a systematic review[J/OL]. J Med Syst, 2021, 45(11): 99 [2022-10-26]. DOI: 10.1007/s10916-021-01774-z.
Inan I, Algin A, Sirik M. WhatsApp as an emergency teleradiology application for cranial CT assessment in emergency services[J]. J Coll Physicians Surg Pak, 2020, 30(7): 730-734. DOI: 10.29271/jcpsp.2020.07.730.
Mun SK, Wong KH, Lo SCB, et al. Artificial intelligence for the future radiology diagnostic service[J/OL]. Front Mol Biosci, 2021, 7: 614258 [2022-10-26]. DOI: 10.3389/fmolb.2020.614258.
Goelz L, Arndt H, Hausmann J, et al. Obstacles and solutions driving the development of a national teleradiology network[J/OL]. Healthcare (Basel), 2021, 9(12): 1684 [2022-10-26]. DOI: 10.3390/healthcare9121684.
Sushmit AS, Zaman SU, Humayun AI, et al. X-ray image compression using convolutional recurrent neural networks[C]//2019 IEEE EMBS International Conference on Biomedical & Health Informatics. Chicago: IEEE, 2019: 1-4. DOI: 10.1109/BHI.2019.8834656.
Amirjanov A, Dimililer K. Image compression system with an optimisation of compression ratio[J]. IET Image Process, 2019, 13(11): 1960-1969. DOI: 10.1049/iet-ipr.2019.0114.
Tashan T, Al-Azawi M. Multilevel magnetic resonance imaging compression using compressive sensing[J]. IET Image Process, 2018, 12(12): 2186-2191. DOI: 10.1049/iet-ipr.2018.5611.
Urvashi S, Sood M, Puthooran E. Region of interest based selective coding technique for volumetric MR image sequence[J]. Multimed Tools Appl, 2021, 80(8): 12857-12879. DOI: 10.1007/s11042-020-10396-5.
Subramanian B, Palanisamy K, Prasath VBS. On a hybrid lossless compression technique for three-dimensional medical images[J]. J Appl Clin Med Phys, 2021, 22(8): 191-203. DOI: 10.1002/acm2.12960.
Kumar BPS, Ramanaiah KV. An integrated medical image compression approach with deep learning and binary plane difference[C]//2019 International Conference on Smart Systems and Inventive Technology (ICSSIT). Tirunelveli, India. Tirunelveli: IEEE, 2019: 202-205. DOI: 10.1109/ICSSIT46314.2019.8987944.
Antoniou ZC, Panayides AS, Pantzaris M, et al. Real-time adaptation to time-varying constraints for medical video communications[J]. IEEE J Biomed Health Inform, 2018, 22(4): 1177-1188. DOI: 10.1109/JBHI.2017.2726180.
Rodrigues VF, Paim EP, Kunst R, et al. Exploring publish/subscribe, multilevel cloud elasticity, and data compression in telemedicine[J/OL]. Comput Methods Programs Biomed, 2020, 191: 105403 [2022-10-26]. DOI: 10.1016/j.cmpb.2020.105403.
Zhuang Y, Jiang N, Li Q, et al. Towards professionally user-adaptive large medical image transmission processing in mobile telemedicine systems[J]. Multimed Syst, 2018, 24(2): 123-145. DOI: 10.1007/s00530-016-0526-5.
Jiang N, Zhuang Y, Hu H, et al. Local-privacy-preserving-based and partition-based batch transmission of sectional medical image sequences in recourse-constraint mobile telemedicine systems[J]. Multimed Tools Appl, 2022, 81(20): 29093-29118. DOI: 10.1007/s11042-022-12663-z.
Liu LJ, Wang LZ, Huang QS, et al. MobMivs: implementing an efficient medical image visualization system for mobile telemedicine[C]//2018 9th International Conference on Information Technology in Medicine and Education (ITME). Hangzhou: IEEE, 2018: 242-246. DOI: 10.1109/ITME.2018.00061.
Qiao L, Li Y, Chen X, et al. Medical high-resolution image sharing and electronic whiteboard system: a pure-web-based system for accessing and discussing lossless original images in telemedicine[J]. Comput Methods Programs Biomed, 2015, 121(2): 77-91. DOI: 10.1016/j.cmpb.2015.05.010.
Chang CC, Wang X, Horng JH, et al. Progressive transmission of medical images via a bank of generative adversarial networks[J/OL]. J Healthc Eng, 2021, 2021: 9917545 [2022-10-26]. DOI: 10.1155/2021/9917545.
Biadgie Y, Kim MS, Sohn KA. Multi-resolution lossless image compression for progressive transmission and multiple decoding using an enhanced edge adaptive hierarchical interpolation[J/OL]. KSII Trans Internet Inf Syst, 2017, 11(12): 6017-6037 [2022-10-26]. DOI: 10.3837/tiis.2017.12.018.
Park JH, Gutenko I, Kaufman AE. Transfer function-guided saliency-aware compression for transmitting volumetric data[J]. IEEE Trans Multimed, 2020, 22(9): 2262-2277. DOI: 10.1109/TMM.2017.2757759.
Ravikiran HK, Paramesha. A hybrid progressive image compression, transmission, and reconstruction architecture[C]//Emerg Res Electron Comput Sci Technol, Singapore: Springer. 2019, 545: 867-875. DOI: 10.1007/978-981-13-5802-9_75.
Schwind F, Münch H, Schröter A, et al. Long-term experience with setup and implementation of an IHE-based image management and distribution system in intersectoral clinical routine[J]. Int J Comput Assist Radiol Surg, 2018, 13(11): 1727-1739. DOI: 10.1007/s11548-018-1819-2.
Huang X, Yi WL, Wang JW, et al. Hadoop-based medical image storage and access method for examination series[J/OL]. Math Probl Eng, 2021, 2021: 5525009 [2022-10-26]. DOI: 10.1155/2021/5525009.
Sun R, Zheng HH, Liu JW, et al. Placement delivery array design for the coded caching scheme in medical data sharing[J]. Neural Comput Appl, 2020, 32(3): 867-878. DOI: 10.1007/s00521-019-04042-x.
Liang BJ, Lin YJ. A web-based mobile medical image reading system[C]//2016 8th International Conference on Information Technology in Medicine and Education (ITME). Fuzhou: IEEE, 2016: 50-53. DOI: 10.1109/ITME.2016.0021.
Jiang W, Feng G, Qin S. Optimal cooperative content caching and delivery policy for heterogeneous cellular networks[J]. IEEE Trans Mob Comput, 2017, 16(5): 1382-1393. DOI: 10.1109/TMC.2016.2597851.
Chen LB, Qiu MK, Dai WY, et al. An efficient cloud storage system for tele-health services[J]. J Supercomput, 2017, 73(7): 2949-2965. DOI: 10.1007/s11227-017-1977-y.
Yang YY, Yiping GMD, Wang MQ Sr, et al. A new medical imaging sharing service network based on professional medical imaging center[C]//SPIE Medical Imaging. Proc SPIE 10954, Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications, San Diego, California, USA. 2019, 10954: 194-202. DOI: 10.1117/12.2512138.
Zhang YG, Chen GC, Du H, et al. Real-time remote health monitoring system driven by 5G MEC-IoT[J/OL]. Electronics, 2020, 9(11): 1753 [2022-10-26]. DOI: 10.3390/electronics9111753.
Samei E, Badano A, Chakraborty D, et al. Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report[J]. Med Phys, 2005, 32(4): 1205-1225. DOI: 10.1118/1.1861159.
Yamazaki A, Liu P, Cheng WC, et al. Image quality characteristics of handheld display devices for medical imaging[J/OL]. PLoS One, 2013, 8(11): e79243 [2022-10-26]. DOI: 10.1371/journal.pone.0079243.
Wu YP, Lin YS, Wu WG, et al. Semiautomatic segmentation of glioma on mobile devices[J/OL]. J Healthc Eng, 2017, 2017: 8054939 [2017-06-27]. DOI: 10.1155/2017/8054939.
Hu W, Geng HN, Guo H, et al. Design and implementation of portable device based mobile medical service system[J]. J Signal Process Syst, 2017, 86(2/3): 237-250. DOI: 10.1007/s11265-016-1118-5.
McLaughlin PD, Moloney F, O'Neill SB, et al. CT of the head for acute stroke: diagnostic performance of a tablet computer prior to intravenous thrombolysis[J]. J Med Imaging Radiat Oncol, 2017, 61(3): 334-338. DOI: 10.1111/1754-9485.12585.
Tian J, Liu ZL. Calibration and quality control of medical image monitor[J]. Chin Med Equip J, 2017, 38(12): 88-90, 94. DOI: 10.7687/j.issn1003-8868.2017.12.088.
Hirschorn DS, Choudhri AF, Shih G, et al. Use of mobile devices for medical imaging[J]. J Am Coll Radiol, 2014, 11(12Pt B): 1277-1285. DOI: 10.1016/j.jacr.2014.09.015.
Yun B, Jang M, Ahn HS, et al. Using a mobile device for margin assessment of specimen mammography in breast-conserving surgery[J/OL]. Medicine (Baltimore), 2021, 100(38): e27243 [2022-10-24]. DOI: 10.1097/md.0000000000027243.
Westberg M, Vasko T, Owen LS, et al. Personal smartphones for neonatal diagnostic imaging: a prospective crossover study[J]. J Paediatr Child Health, 2017, 53(4): 343-347. DOI: 10.1111/jpc.13467.
Komatsu T, Sakai K, Iguchi Y, et al. Using a smartphone application for the accurate and rapid diagnosis of acute anterior intracranial arterial occlusion: usability study[J/OL]. J Med Internet Res, 2021, 23(8): e28192 [2022-10-26]. DOI: 10.2196/28192.
Ajrawat P, Young Shin D, Dryan D, et al. The use of telehealth for orthopedic consultations and assessments: a systematic review[J]. Orthopedics, 2021, 44(4): 198-206. DOI: 10.3928/01477447-20210621-08.
Jiang N, Zhuang Y, Chiu DKW. Effective and efficient crowd-assisted similarity retrieval of medical images in resource-constraint Mobile telemedicine systems[J]. Multimed Tools Appl, 2020, 79(27/28): 19893-19923. DOI: 10.1007/s11042-020-08755-3.
Zhuang Y, Jiang N. Privacy-preserving distributed similarity retrieval of large CT image sequence database in mobile telemedicine networks[J]. IEEE Access, 10: 57339-57351. DOI: 10.1109/ACCESS.2022.3178705.
Liu LJ, Wang LZ, Huang QS, et al. An efficient architecture for medical high-resolution images transmission in mobile telemedicine systems[J/OL]. Comput Methods Programs Biomed, 2020, 187: 105088 [2022-10-26]. DOI: 10.1016/j.cmpb.2019.105088.
Gao XC, Ma L, Jin J, et al. Glioma segmentation strategies in 5G teleradiology[C]//2020 IEEE Wireless Communications and Networking Conference Workshops. Seoul: IEEE, 2020: 1-6. DOI: 10.1109/WCNCW48565.2020.9124813.
Li YN, Li YH, Deng ZF, et al. A collaborative telemedicine platform focusing on paranasal sinus segmentation[C]//Intell Interact Multimed Syst Serv, Cham: Springer, 2019, 98:238-247. DOI: 10.1007/978-3-319-92231-7_25.
Curiel M, Calle DF, Santamaría AS, et al. Parallel processing of images in mobile devices using BOINC[J]. Open Eng, 2018, 8(1): 87-101. DOI: 10.1515/eng-2018-0012.
He ZY, Zhou Y, Zhu ZG, et al. OpenGL ES-based three-dimensional reconstruction of DICOM image on mobile device[J]. Chin J Med Phys, 2017, 34(10): 1018-1021. DOI: 10.3969/j.issn.1005-202X.2017.10.010.
Karner F, Gsaxner C, Pepe A, et al. Single-shot deep volumetric regression for mobile medical augmented reality[C]//Multimodal Learn Clin Decis Support Clin Image Based Proced, Cham: Springer, 2020, 14775: 64-74. DOI: 10.1007/978-3-030-60946-7_7.
Zhang J, Li D, Hua QZ, et al. 3D remote healthcare for noisy CT images in the Internet of Things using edge computing[J]. IEEE Access, 2021, 9: 15170-15180. DOI: 10.1109/ACCESS.2021.3052469.
Mady AS, Abou El-Seoud S. An interactive augmented reality volume rendering mobile application[C]//Internet Things Infrastructures Mob Appl, Cham: Springer, 2021, 1192:888-896. DOI: 10.1007/978-3-030-49932-7_82.
Iaquinta P, Iusi M, Caroprese L, et al. eIMES 3D: an innovative medical images analysis tool to support diagnostic and surgical intervention[J]. Procedia Comput Sci, 2017, 110: 459-464. DOI: 10.1016/j.procs.2017.06.122.
Tukora B. Effective volume rendering on mobile and standalone VR headsets by means of a hybrid method[J]. Pollack Period, 2020, 15(2): 3-12. DOI: 10.1556/606.2020.15.2.1.
Abou El-Seoud S, Mady A, Rashed E. An interactive mixed reality ray tracing rendering mobile application of medical data in minimally invasive surgeries[J/OL]. Int J Interact Mob Technol, 2019, 13(3): 29 [2022-10-26]. DOI: 10.3991/ijim.v13i03.9893.
Coutinho EAG, Carvalho BM. Evaluation of real-time remote 3D rendering of medical images using GPUs[C]//2020 IEEE 33rd International Symposium on Computer-Based Medical Systems. Rochester: IEEE, 2020: 19-24. DOI: 10.1109/CBMS49503.2020.00011.
European Society of Radiology (ESR). ESR paper on the proper use of mobile devices in radiology[J]. Insights Imaging, 2018, 9(2): 247-251. DOI: 10.1007/s13244-017-0589-7.
Mohsin AH, Zaidan AA, Zaidan BB, et al. Real-time remote health monitoring systems using body sensor information and finger vein biometric verification: a multi-layer systematic review[J/OL]. J Med Syst, 2018, 42(12): 238 [2022-10-26]. DOI: 10.1007/s10916-018-1104-5.
Hossain M. An Internet of Things-based health prescription assistant and its security system design[J]. Future Gener Comput Syst, 2018, 82: 422-439. DOI: 10.1016/j.future.2017.11.020.
Huang QL, Zhang ZC, Yang YX. Privacy-preserving media sharing with scalable access control and secure deduplication in mobile cloud computing[J]. IEEE Trans Mob Comput, 2021, 20(5): 1951-1964. DOI: 10.1109/TMC.2020.2970705.
Elbasi E. B-DCT based watermarking algorithm for patient data protection in IoMT[C]//2020 International Conference on Information Security and Cryptology (ISCTURKEY). Ankara: IEEE, 2020: 1-4. DOI: 10.1109/ISCTURKEY51113.2020.9307963.
Eze P, Parampalli U, Evans R, et al. A new evaluation method for medical image information hiding techniques[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Montreal: IEEE, 2020: 6119-6122. DOI: 10.1109/EMBC44109.2020.9176066.
Afzal I, Parah SA, Hurrah NN, et al. Secure patient data transmission on resource constrained platform[J/OL]. Multimed Tools Appl, 2020: 1-26 [2022-10-26]. DOI: 10.1007/s11042-020-09139-3.
Li L, Chang CC, Bai JL, et al. Hamming code strategy for medical image sharing[J/OL]. Appl Syst Innov, 2020, 3(1): 8 [2022-10-26]. DOI: 10.3390/asi3010008.
Sajjad M, Muhammad K, Baik SW, et al. Mobile-cloud assisted framework for selective encryption of medical images with steganography for resource-constrained devices[J]. Multimed Tools Appl, 2017, 76(3): 3519-3536. DOI: 10.1007/s11042-016-3811-6.
Bharti V, Biswas B, Shukla KK. A novel multiobjective GDWCN-PSO algorithm and its application to medical data security[J/OL]. ACM Trans Internet Technol, 2021, 21(2): 1-28 [2022-10-26]. DOI: 10.1145/3397679.
Randhawa PA, Morrish W, Lysack JT, et al. Neuroradiology using secure mobile device review[J]. Can J Neurol Sci, 2016: 1-4. DOI: 10.1017/cjn.2016.40.
Drakopoulos G, Marountas M, Liapakis X, et al. Blockchain for mobile health applications acceleration with GPU computing[J]. Adv Exp Med Biol, 2020, 1194: 389-396. DOI: 10.1007/978-3-030-32622-7_36.
Rajagopalan S, Janakiraman S, Rengarajan A, et al. IoT framework for secure medical image transmission[C]//2018 International Conference on Computer Communication and Informatics (ICCCI). Coimbatore: IEEE, 2018: 1-5. DOI: 10.1109/ICCCI.2018.8441284.
Choi US, Cho SJ, Kang SW. Color image encryption algorithm for medical image by mixing chaotic maps[C]//2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). Porto: IEEE, 2020: 1-5. DOI: 10.1109/CSNDSP49049.2020.9249557.
Ge J. ALCencryption: a secure and efficient algorithm for medical image encryption[J]. Comput Modeling Eng Sci, 2020, 125(3): 1083-1100. DOI: 10.32604/cmes.2021.013039.
Albert L, Capel I, García-Sáez G, et al. Managing gestational diabetes mellitus using a smartphone application with artificial intelligence (SineDie) during the COVID-19 pandemic: much more than just telemedicine[J/OL]. Diabetes Res Clin Pract, 2020, 169: 108396 [2022-10-26]. DOI: 10.1016/j.diabres.2020.108396.
Pieczynski J, Kuklo P, Grzybowski A. The role of telemedicine, in-home testing and artificial intelligence to alleviate an increasingly burdened healthcare system: diabetic retinopathy[J]. Ophthalmol Ther, 2021, 10(3): 445-464. DOI: 10.1007/s40123-021-00353-2.
Rahman ML, Nizam NB, Datta P, et al. A wavelet-CNN feature fusion approach for detecting COVID-19 from chest radiographs[C]//2020 11th International Conference on Electrical and Computer Engineering (ICECE). Dhaka: IEEE, 2020: 387-390. DOI: 10.1109/ICECE51571.2020.9393085.
Gaur L, Bhatia U, Jhanjhi NZ, et al. Medical image-based detection of COVID-19 using Deep Convolution Neural Networks[J/OL]. Multimed Syst, 1-10 [2022-10-26]. DOI: 10.1007/s00530-021-00794-6.
Zulkifley MA, Abdani SR, Zulkifley NH, et al. Residual-shuffle network with spatial pyramid pooling module for COVID-19 screening[J/OL]. Diagnostics (Basel), 2021, 11(8): 1497 [2022-10-26]. DOI: 10.3390/diagnostics11081497.
Tseng KK, Zhang R, Chen CM, et al. DNetUnet: a semi-supervised CNN of medical image segmentation for super-computing AI service[J]. J Supercomput, 2021, 77(4): 3594-3615. DOI: 10.1007/s11227-020-03407-7.
Lee J, Lee S. Robust CNN compression framework for security-sensitive embedded systems[J/OL]. Appl Sci, 2021, 11(3): 1093 [2022-10-26]. DOI: 10.3390/app11031093.
Vaze S, Xie W, Namburete A. Low-memory CNNs enabling real-time ultrasound segmentation towards mobile deployment[J/OL]. IEEE J Biomed Health Inform, 2020 [2022-10-26]. DOI: 10.1109/JBHI.2019.2961264.
Han S, Mao HZ, Dally W. Deep compression: compressing deep neural network with pruning, trained quantization and huffman coding[J/OL]. ArXiv, 2016 [2022-10-26]. DOI: 10.48550/arXiv.1510.00149.
Gan JH, Ren Y, He TL, et al. Application of image segmentation based on deep learning in mobile terminal equipment[C]//2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC). Guiyang: IEEE, 2021: 903-908. DOI: 10.1109/ICNISC54316.2021.00170.
Paluru N, Dayal A, Jenssen HB, et al. Anam-net: anamorphic depth embedding-based lightweight CNN for segmentation of anomalies in COVID-19 chest CT images[J]. IEEE Trans Neural Netw Learn Syst, 2021, 32(3): 932-946. DOI: 10.1109/TNNLS.2021.3054746.
Esmail Karar M, Reyad O, Abd-Elnaby M, et al. Lightweight transfer learning models for ultrasound-guided classification of COVID-19 patients[J]. Comput Mater Continua, 2021, 69(2): 2295-2312. DOI: 10.32604/cmc.2021.018671.
Tobias RR, Carlo de Jesus L, Mital ME, et al. Android application for chest X-ray health classification from a CNN deep learning TensorFlow model[C]//2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech). Kyoto: IEEE, 2020: 255-259. DOI: 10.1109/LifeTech48969.2020.1570619189.
Liu JX, Li MX, Luo YL, et al. Alzheimer's disease detection using depthwise separable convolutional neural networks[J/OL]. Comput Methods Programs Biomed, 2021, 203: 106032 [2022-10-26]. DOI: 10.1016/j.cmpb.2021.106032.
Choudhary T, Mishra V, Goswami A, et al. A transfer learning with structured filter pruning approach for improved breast cancer classification on point-of-care devices[J/OL]. Comput Biol Med, 2021, 134: 104432 [2022-10-26]. DOI: 10.1016/j.compbiomed.2021.104432.
Jzau-Sheng L, Fang SA, Li CZ. Modified convolutional network for the identification of covid-19 with a mobile system[C]//2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). Taichung: IEEE, 2021: 187-190. DOI: 10.1109/SNPD51163.2021.9705004.
Xu XW, Lu Q, Wang TC, et al. Edge segmentation: Empowering mobile telemedicine with compressed cellular neural networks[C]//2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Irvine: IEEE, 2017: 880-887. DOI: 10.1109/ICCAD.2017.8203873.
Garifulla M, Shin J, Kim C, et al. A case study of quantizing convolutional neural networks for fast disease diagnosis on portable medical devices[J/OL]. Sensors (Basel), 2021, 22(1): 219 [2021-10-26]. DOI: 10.3390/s22010219.

PREV Research progress of colorectal cancer radiogenomics
NEXT From research to clinic: The huge potential about application of magnetic resonance imaging in neurodegenerative disease

Tel & Fax: +8610-67113815    E-mail: