Share this content in WeChat
Advances in the application of magnetic resonance elastography in the diagnosis and treatment of hepatocellular carcinoma
ZHONG Linhui  LIU Wenguang  LI Wenzheng 

Cite this article as: Zhong LH, Liu WG, Li WZ. Advances in the application of magnetic resonance elastography in the diagnosis and treatment of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(12): 150-153, 158. DOI:10.12015/issn.1674-8034.2022.12.028.

[Abstract] Hepatocellular carcinoma (HCC) is a highly malignant, metastatic tumor with poor prognosis. Accurate imaging assessment can help diagnose and make clinical treatment decisions. Magnetic resonance elastography (MRE) provides a new way to evaluate HCC with non-invasive quantification of tissue mechanics, reproducibility, and low subjective impact factors, which has good clinical applicability. It can improve patients' quality of life and prognosis. This paper reviews the research progress of MRE in the projection, diagnosis, differential diagnosis, treatment effectiveness assessment and prognosis survival prediction of HCC, to analyze the advantages and shortcomings of MRE technology at this stage and the future development direction, so as to provide favorable reference for the diagnosis and treatment of HCC and improve the prognosis of HCC patients.
[Keywords] hepatocellular carcinoma;magnetic resonance imaging;magnetic resonance elastography;diagnosis;treatment effectiveness assessment;prognostic survival;research progress

ZHONG Linhui1, 2   LIU Wenguang1, 2   LI Wenzheng1, 2*  

1 Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China

2 National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China

Li WZ, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071895).
Received  2022-05-23
Accepted  2022-11-04
DOI: 10.12015/issn.1674-8034.2022.12.028
Cite this article as: Zhong LH, Liu WG, Li WZ. Advances in the application of magnetic resonance elastography in the diagnosis and treatment of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(12): 150-153, 158. DOI:10.12015/issn.1674-8034.2022.12.028.

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
Chen WQ, Zheng RS, Baade PD, et al. Cancer statistics in China, 2015[J]. CA A Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
Zhao W, Liu W, Liu H, et al. Preoperative prediction of microvascular invasion of hepatocellular carcinoma with IVIM diffusion-weighted MR imaging and Gd-EOB-DTPA-enhanced MR imaging[J/OL]. PLoS One, 201813(5): e0197488 [2022-10-11]. DOI: 10.1371/journal.pone.0197488.
Manduca A, Bayly PJ, Ehman RL, et al. MR elastography: principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
Handorf AM, Zhou YX, Halanski MA, et al. Tissue stiffness dictates development, homeostasis, and disease progression[J]. Organogenesis, 2015, 11(1): 1-15. DOI: 10.1080/15476278.2015.1019687.
Patel BK, Pepin K, Brandt KR, et al. Association of breast cancer risk, density, and stiffness: global tissue stiffness on breast MR elastography (MRE)[J]. Breast Cancer Res Treat, 2022, 194(1): 79-89. DOI: 10.1007/s10549-022-06607-2.
Aunan-Diop JS, Halle B, Pedersen CB, et al. Magnetic resonance elastography in intracranial neoplasms: a scoping review[J]. Top Magn Reson Imaging, 2022, 31(1): 9-22. DOI: 10.1097/RMR.0000000000000292.
Haas Y, Dosch MP, Vogl TJ. Response comparison of PLC and SLC with magnetic resonance elastography after TACE[J/OL]. Sci Rep, 2022, 12(1): 8317 [2022-10-11]. DOI: 10.1038/s41598-022-12478-w.
Shahryari M, Tzschätzsch H, Guo J, et al. Tomoelastography distinguishes noninvasively between benign and malignant liver lesions[J]. Cancer Res, 2019, 79(22): 5704-5710. DOI: 10.1158/0008-5472.CAN-19-2150.
Li MS, Guo J, Hu P, et al. Tomoelastography based on multifrequency MR elastography for prostate cancer detection: comparison with multiparametric MRI[J]. Radiology, 2021, 299(2): 362-370. DOI: 10.1148/radiol.2021201852.
Hu J, Guo J, Pei Y, et al. Rectal Tumor Stiffness Quantified by In Vivo Tomoelastography and Collagen Content Estimated by Histopathology Predict Tumor Aggressiveness[J/OL]. Front Oncol, 2021, 11: 701336 [2022-10-11]. DOI: 10.3389/fonc.2021.701336.
Hu B, Deng Y, Chen JB, et al. Evaluation of MR elastography for prediction of lymph node metastasis in prostate cancer[J]. Abdom Radiol (NY), 2021, 46(7): 3387-3400. DOI: 10.1007/s00261-021-02982-4.
Morisaka H, Motosugi U, Ichikawa S, et al. Magnetic resonance elastography is as accurate as liver biopsy for liver fibrosis staging[J]. J Magn Reson Imaging, 2018, 47(5): 1268-1275. DOI: 10.1002/jmri.25868.
Hsu C, Caussy C, Imajo K, et al. Magnetic resonance vs transient elastography analysis of patients with nonalcoholic fatty liver disease: a systematic review and pooled analysis of individual participants[J]. Clin Gastroenterol Hepatol, 2019, 17(4): 630-637. DOI: 10.1016/j.cgh.2018.05.059.
Runel G, Lopez-Ramirez N, Chlasta J, et al. Biomechanical Properties of Cancer Cells[J/OL]. Cells, 2021, 10(4): 887 [2022-10-11]. DOI: 10.3390/cells10040887
Lekka M, Pogoda K, Gostek J, et al. Cancer cell recognition - Mechanical phenotype[J]. Micron, 2012, 43(12): 1259-1266. DOI: 10.1016/j.micron.2012.01.019.
Mohan V, Das A, Sagi I. Emerging roles of ECM remodeling processes in cancer[J]. Semin Cancer Biol, 2020, 62: 192-200. DOI: 10.1016/j.semcancer.2019.09.004.
Najafi M, Farhood B, Mortezaee K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers[J]. J Cell Biochem, 2019, 120(3): 2782-2790. DOI: 10.1002/jcb.27681.
Ma JB, Bai JY, Zhang HB, et al. Downregulation of collagen COL4A6 is associated with prostate cancer progression and metastasis[J]. Genet Test Mol Biomarkers, 2020, 24(7): 399-408. DOI: 10.1089/gtmb.2020.0009.
Akkaya HE, Erden A, Kuru Öz D, et al. Magnetic resonance elastography: basic principles, technique, and clinical applications in the liver[J]. Diagn Interv Radiol, 2018, 24(6): 328-335. DOI: 10.5152/dir.2018.18186.
Zheng YF, Zhu MY, Li MS. Effects of alpha-fetoprotein on the occurrence and progression of hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2020, 146(10): 2439-2446. DOI: 10.1007/s00432-020-03331-6.
Qi F, Zhou A, Yan L, et al. The diagnostic value of PIVKA-Ⅱ, AFP, AFP-L3, CEA, and their combinations in primary and metastatic hepatocellular carcinoma[J/OL]. J Clin Lab Anal, 2020, 34(5): e23158 [2022-10-11]. DOI: 10.1002/jcla.23158.
Fang YS, Wu Q, Zhao HC, et al. Do combined assays of serum AFP, AFP-L3, DCP, GP73, and DKK-1 efficiently improve the clinical values of biomarkers in decision-making for hepatocellular carcinoma? A meta-analysis[J]. Expert Rev Gastroenterol Hepatol, 2021, 15(9): 1065-1076. DOI: 10.1080/17474124.2021.1900731.
Ghosh S, Bhowmik S, Majumdar S, et al. The exosome encapsulated microRNAs as circulating diagnostic marker for hepatocellular carcinoma with low alpha-fetoprotein[J]. Int J Cancer, 2020, 147(10): 2934-2947. DOI: 10.1002/ijc.33111.
Feng H, Li B, Li Z, et al. PIVKA-Ⅱ serves as a potential biomarker that complements AFP for the diagnosis of hepatocellular carcinoma[J/OL]. BMC Cancer, 2021, 21(1): 401 [2022-10-11]. DOI: 10.1186/s12885-021-08138-3.
Zhou JM, Wang T, Zhang KH. AFP-L3 for the diagnosis of early hepatocellular carcinoma: A meta-analysis[J/OL]. Medicine (Baltimore), 2021, 100(43): e27673 [2022-10-11]. DOI: 10.1097/MD.0000000000027673.
Song T, Wang L, Xin R, et al. Evaluation of serum AFP and DCP levels in the diagnosis of early-stage HBV-related HCC under different backgrounds[J/OL]. J Int Med Res, 2020, 48(10): 300060520969087 [2022-10-11]. DOI: 10.1177/0300060520969087.
Tamaki N, Higuchi M, Kurosaki M, et al. Risk assessment of hepatocellular carcinoma development by magnetic resonance elastography in chronic hepatitis C patients who achieved sustained virological responses by direct-acting antivirals[J]. J Viral Hepat, 2019, 26(7): 893-899. DOI: 10.1111/jvh.13103.
Bae JS, Lee DH, Yi NJ, et al. Magnetic Resonance Elastography Versus Transient Elastography in the Prediction of Complications After Resection for Hepatocellular Carcinoma[J/OL]. Ann Surg, 2022, 276(5): e466-e473 [2022-10-11]. DOI: 10.1097/SLA.0000000000004576
Kumada T, Toyoda H, Yasuda S, et al. Prediction of Hepatocellular Carcinoma by Liver Stiffness Measurements Using Magnetic Resonance Elastography After Eradicating Hepatitis C Virus[J/OL]. Clin Transl Gastroenterol, 2021, 12(4):e00337 [2022-10-11]. DOI: 10.14309/ctg.0000000000000337.
Ichikawa S, Motosugi U, Enomoto N, et al. Magnetic resonance elastography can predict development of hepatocellular carcinoma with longitudinally acquired two-point data[J]. Eur Radiol, 2019, 29(2): 1013-1021. DOI: 10.1007/s00330-018-5640-7.
Chu CY, Cheng CH, Chen HL, et al. Long-term histological change in chronic hepatitis C patients who had received peginterferon plus ribavirin therapy with sustained virological response[J]. J Formos Med Assoc, 2019, 118(7): 1129-1137. DOI: 10.1016/j.jfma.2018.11.005.
Wu LL, Bi JY, Liu LJ, et al. Magnetic resonance elastography can predict the development of hepatocellular carcinoma: a meta-analysis and systematic review[J]. J Gastrointest Oncol, 2021, 12(4): 1215-1222. DOI: 10.21037/jgo-21-196.
Thompson SM, Wang J, Chandan VS, et al. MR elastography of hepatocellular carcinoma: correlation of tumor stiffness with histopathology features-Preliminary findings[J]. Magn Reson Imaging, 2017, 37: 41-45. DOI: 10.1016/j.mri.2016.11.005.
Hu X, Zhou J, Li Y, et al. Added Value of Viscoelasticity for MRI-Based Prediction of Ki-67 Expression of Hepatocellular Carcinoma Using a Deep Learning Combined Radiomics (DLCR) Model[J/OL]. Cancers (Basel), 2022, 14(11): 2575 [2022-10-11]. DOI: 10.3390/cancers14112575.
Garteiser P, Doblas S, Daire JL, et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation[J]. Eur Radiol, 2012, 22(10): 2169-2177. DOI: 10.1007/s00330-012-2474-6.
Bureau of Medical Administration, National Health Commission of the People's Republic of China. Standardization for diagnosis and treatment of hepatocellular carcinoma (2022 edition)[J]. Chin J Pract Surg, 2022, 42(3): 241-273. DOI: 10.19538/j.cjps.issn1005-2208.2022.03.01.
Kim S, Mannelli L, Hajdu CH, et al. Hepatocellular carcinoma: assessment of response to transarterial chemoembolization with image subtraction[J]. J Magn Reson Imaging, 2010, 31(2): 348-355. DOI: 10.1002/jmri.22038.
Gordic S, Ayache JB, Kennedy P, et al. Value of tumor stiffness measured with MR elastography for assessment of response of hepatocellular carcinoma to locoregional therapy[J]. Abdom Radiol (NY), 2017, 42(6): 1685-1694. DOI: 10.1007/s00261-017-1066-y.
Kennedy P, Lewis S, Bane O, et al. Early effect of 90Y radioembolisation on hepatocellular carcinoma and liver parenchyma stiffness measured with MR elastography: initial experience[J]. Eur Radiol, 2021, 31(8): 5791-5801. DOI: 10.1007/s00330-020-07636-5.
Qayyum A, Hwang KP, Stafford J, et al. Immunotherapy response evaluation with magnetic resonance elastography (MRE) in advanced HCC[J/OL]. J Immunother Cancer, 2019, 7(1): 329 [2022-10-11]. DOI: 10.1186/s40425-019-0766-y.
Kim B, Kim SS, Cho SW, et al. Liver stiffness in magnetic resonance elastography is prognostic for sorafenib-treated advanced hepatocellular carcinoma[J]. Eur Radiol, 2021, 31(4): 2507-2517. DOI: 10.1007/s00330-020-07357-9.
Sánchez Segura J, León Díaz FJ, Pérez Reyes M, et al. Predictive models of hepatocellular carcinoma recurrence after liver transplantation[J]. Transplant Proc, 2020, 52(2): 546-548. DOI: 10.1016/j.transproceed.2019.11.048.
Lee S, Kang TW, Song KD, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3): 564-571. DOI: 10.1097/sla.0000000000003268.
Chan AWH, Zhong JH, Berhane S, et al. Development of pre and post-operative models to predict early recurrence of hepatocellular carcinoma after surgical resection[J]. J Hepatol, 2018, 69(6): 1284-1293. DOI: 10.1016/j.jhep.2018.08.027.
Cho HJ, Kim B, Kim HJ, et al. Liver stiffness measured by MR elastography is a predictor of early HCC recurrence after treatment[J]. Eur Radiol, 2020, 30(8): 4182-4192. DOI: 10.1007/s00330-020-06792-y.
Zhao H, Zhang L, Chen H. Liver stiffness measured by magnetic resonance elastography in early recurrence of hepatocellular carcinoma after treatment: A protocol for systematic review and meta analysis[J/OL]. Medicine (Baltimore), 2021, 100(23): e26183 [2022-10-11]. DOI: 10.1097/MD.0000000000026183.
Motosugi U, Ichikawa T, Koshiishi T, et al. Liver stiffness measured by magnetic resonance elastography as a risk factor for hepatocellular carcinoma: a preliminary case-control study[J]. Eur Radiol, 2013, 23(1): 156-162. DOI: 10.1007/s00330-012-2571-6.
Park SJ, Yoon JH, Lee DH, et al. Tumor stiffness measurements on MR elastography for single nodular hepatocellular carcinomas can predict tumor recurrence after hepatic resection[J]. J Magn Reson Imaging, 2021, 53(2): 587-596. DOI: 10.1002/jmri.27359.
Erstad DJ, Tanabe KK. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma[J]. Ann Surg Oncol, 2019, 26(5): 1474-1493. DOI: 10.1245/s10434-019-07227-9.
Wang W, Guo Y, Zhong J, et al. The clinical significance of microvascular invasion in the surgical planning and postoperative sequential treatment in hepatocellular carcinoma[J/OL]. Sci Rep, 2021, 11(1): 2415 [2022-10-11]. DOI: 10.1038/s41598-021-82058-x.
Yang L, Gu DS, Wei JW, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2019, 8(5): 373-386. DOI: 10.1159/000494099.
Nebbia G, Zhang Q, Arefan D, et al. Pre-operative microvascular invasion prediction using multi-parametric liver MRI radiomics[J]. J Digit Imaging, 2020, 33(6): 1376-1386. DOI: 10.1007/s10278-020-00353-x.
Yin ZY, Glaser KJ, Manduca A, et al. Slip interface imaging predicts tumor-brain adhesion in vestibular schwannomas[J]. Radiology, 2015, 277(2): 507-517. DOI: 10.1148/radiol.2015151075.
Yin ZY, Lu X, Cohen Cohen S, et al. A new method for quantification and 3D visualization of brain tumor adhesion using slip interface imaging in patients with meningiomas[J]. Eur Radiol, 2021, 31(8): 5554-5564. DOI: 10.1007/s00330-021-07918-6.
Yin ZY, Hughes JD, Trzasko JD, et al. Slip interface imaging based on MR-elastography preoperatively predicts meningioma-brain adhesion[J]. J Magn Reson Imaging, 2017, 46(4): 1007-1016. DOI: 10.1002/jmri.25623.
Li MS, Yin ZY, Hu B, et al. MR elastography-based shear strain mapping for assessment of microvascular invasion in hepatocellular carcinoma[J]. Eur Radiol, 2022, 32(7): 5024-5032. DOI: 10.1007/s00330-022-08578-w.
Kromrey ML, Le Bihan D, Ichikawa S, et al. Diffusion-weighted MRI-based virtual elastography for the assessment of liver fibrosis[J]. Radiology, 2020, 295(1): 127-135. DOI: 10.1148/radiol.2020191498.
Ota T, Hori M, Le Bihan D, et al. Diffusion-Based Virtual MR Elastography of the Liver: Can It Be Extended beyond Liver Fibrosi?[J/OL]. J Clin Med, 2021, 10(19): 4553 [2022-10-11]. DOI: 10.3390/jcm10194553.

PREV Research progress of magnetic resonance imaging and nuclear medicine on heart disease induced by radiotherapy of thoracic tumors
NEXT Research progress of machine learning model based on CT and MRI radiomics for predicting early recurrence of hepatocellular carcinoma

Tel & Fax: +8610-67113815    E-mail: