Share this content in WeChat
Special Focus
The evaluation of myocardial toxicity in children with leukemia after chemotherapy by MRI
HUANG Huiyu  ZHANG Yong  CHENG Jingliang 

Cite this article as: Huang HY, Zhang Y, Cheng JL. The evaluation of myocardial toxicity in children with leukemia after chemotherapy by MRI[J]. Chin J Magn Reson Imaging, 2022, 13(12): 58-63. DOI:10.12015/issn.1674-8034.2022.12.010.

[Abstract] Cardiotoxicity is a serious complication in the course of anti-tumor chemotherapy, which significantly reduces the life quality of children with leukemia and improves the incidence of adverse cardiovascular events. Therefore, it is important to find subclinical cardiotoxicity and cardiac dysfunction as soon as possible to prevent and reduce the toxic and side effects of chemotherapy drugs on the heart. This article reviews the role of MRI in detecting cardiac toxicity of children with leukemia after chemotherapy and aims to provide rich and comprehensive information for the extensive application of MRI in the diagnosis, monitoring, efficacy evaluation, and prognosis judgment of cardiotoxicity after chemotherapy in children. Expecting that clinicians can find cardiac toxicity as early as possible by using cardiac magnetic resonance examination when carrying out chemotherapy for children with leukemia, so as to adjust the drug regimen to ensure the balance between treatment effect and reducing cardiac toxicity.
[Keywords] leukemia;children;magnetic resonance imaging;cardiac magnetic resonance;myocardium;chemotherapy;cardiotoxicity

HUANG Huiyu   ZHANG Yong   CHENG Jingliang*  

Department of Magnetic Resonance, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

Cheng JL, E-mail:

Conflicts of interest   None.

Received  2022-08-10
Accepted  2022-12-04
DOI: 10.12015/issn.1674-8034.2022.12.010
Cite this article as: Huang HY, Zhang Y, Cheng JL. The evaluation of myocardial toxicity in children with leukemia after chemotherapy by MRI[J]. Chin J Magn Reson Imaging, 2022, 13(12): 58-63. DOI:10.12015/issn.1674-8034.2022.12.010.

Dai MN, Xi Y, Yin WQ, et al. Trend in disease burden of leukemia in China, 1990–2019[J]. Chin J Public Health, 2022, 38(5): 539-546. DOI: 10.11847/zgggws1135530.
Armenian S, Bhatia S. Predicting and Preventing Anthracycline-Related Cardiotoxicity[J/OL]. Am Soc Clin Oncol Educ Book, 2018, 38: 3-12 [2022-10-30]. DOI: 10.1200/EDBK_100015.
Neudorf U, Schönecker A, Reinhardt D. Cardio-toxicity in childhood cancer survivors "Cure is not enough"[J]. J Thorac Dis, 2018, 10(Suppl 35): S4344-S4350. DOI: 10.21037/jtd.2018.11.28.
Kremer LC, Van Dalen EC, Offringa M, et al. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study[J]. J Clin Oncol, 2001, 19(1): 191-196. DOI: 10.1200/JCO.2001.19.1.191.
Jain D, Aronow W. Cardiotoxicity of cancer chemotherapy in clinical practice[J]. Hosp Pract (1995), 2019, 47(1): 6-15. DOI: 10.1080/21548331.2018.1530831.
Long TM, Marsh CE, Dembo LG, et al. Early markers of cardiovascular injury in childhood leukaemia survivors treated with anthracycline chemotherapy[J/OL]. Cardiooncology, 2019, 5: 11 [2022-10-30]. DOI: 10.1186/s40959-019-0047-4.
Getz KD, Sung L, Ky B, et al. Occurrence of Treatment-Related Cardiotoxicity and Its Impact on Outcomes Among Children Treated in the AAML0531 Clinical Trial: A Report From the Children's Oncology Group[J]. J Clin Oncol, 2019, 37(1): 12-21. DOI: 10.1200/JCO.18.00313.
Sun FF, Zhang YL, Sun XL, et al. Early evaluation and prevention of anthracycline related cardiotoxicity[J]. Chin J Pract Intern Med, 2021, 41(7): 634-638. DOI: 10.19538/j.nk2021070117.
Cau R, Bassareo P, Cherchi V, et al. Early diagnosis of chemotherapy-induced cardiotoxicity by cardiac MRI[J/OL]. Eur J Radiol, 2020, 130: 109158 [2022-10-30]. DOI: 10.1016/j.ejrad.2020.109158.
Mahabadi AA, Rischpler C. Cardiovascular imaging in cardio-oncology[J]. J Thorac Dis, 2018, 10(Suppl 35): S4351-S4366. DOI: 10.21037/jtd.2018.10.92.
Armstrong GT, Plana JC, Zhang N, et al. Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging[J]. J Clin Oncol, 2012, 30(23): 2876-2884. DOI: 10.1200/JCO.2011.40.3584.
Muehlberg F, Funk S, Zange L, et al. Native myocardial T1 time can predict development of subsequent anthracycline-induced cardiomyopathy[J]. ESC Heart Fail, 2018, 5(4): 620-629. DOI: 10.1002/ehf2.12277.
Neilan TG, Coelho-Filho OR, Pena-Herrera D, et al. Left ventricular mass in patients with a cardiomyopathy after treatment with anthracyclines[J]. Am J Cardiol, 2012, 110(11): 1679-1686. DOI: 10.1016/j.amjcard.2012.07.040.
Ferreira de Souza T, Quinaglia AC Silva T, Osorio Costa F, et al. Anthracycline Therapy Is Associated With Cardiomyocyte Atrophy and Preclinical Manifestations of Heart Disease[J]. JACC Cardiovasc Imaging, 2018, 11(8): 1045-1055. DOI: 10.1016/j.jcmg.2018.05.012.
Jordan JH, Castellino SM, Meléndez GC, et al. Left Ventricular Mass Change After Anthracycline Chemotherapy[J/OL]. Circ Heart Fail, 2018, 11(7): e004560 [2022-10-30]. DOI: 10.1161/CIRCHEARTFAILURE.117.004560.
Fan L, Yang CJ. Application progress of echocardiography in the quantitative assessment of myocardial function in children[J]. J Clin Ultrasound in Med, 2022, 24(6): 449-452. DOI: 10.16245/j.cnki.issn1008-6978.2022.06.004.
Visvikis A, Kyvelou SM, Pietri P, et al. Cardiotoxic Profile and Arterial Stiffness of Adjuvant Chemotherapy for Colorectal Cancer[J/OL]. Cancer Manag Res, 2020, 12: 1175-1185 [2022-10-30]. DOI: 10.2147/CMAR.S223032.
Grover S, Leong DP, Chakrabarty A, et al. Left and right ventricular effects of anthracycline and trastuzumab chemotherapy: a prospective study using novel cardiac imaging and biochemical markers[J]. Int J Cardiol, 2013, 168(6): 5465-5467. DOI: 10.1016/j.ijcard.2013.07.246.
Lange SA, Ebner B, Wess A, et al. Echocardiography signs of early cardiac impairment in patients with breast cancer and trastuzumab therapy[J]. Clin Res Cardiol, 2012, 101(6): 415-426. DOI: 10.1007/s00392-011-0406-0.
Akam-Venkata J, Galas J, Aggarwal S. Cardiovascular Evaluation of Children With Malignancies[J/OL]. Curr Treat Options Cardiovasc Med, 2019, 21(3): 14 [2022-10-30]. DOI: 10.1007/s11936-019-0719-2.
Haarmark C, Haase C, Jensen MM, et al. Pre-chemotherapy values for left and right ventricular volumes and ejection fraction by gated tomographic radionuclide angiography using a cadmium-zinc-telluride detector gamma camera[J]. J Nucl Cardiol, 2016, 23(1): 87-97. DOI: 10.1007/s12350-015-0177-5.
Zhang LJ, Tian JF, Yang XY, et al. Clinical value of left ventricular strain analysis by cardiovascular magnetic resonance in patients with coronary chronic total occlusion[J]. Chin J Cardiol, 2021, 49(6): 601-609. DOI: 10.3760/cma.j.cn112148-20201217-00992.
Wang J, Chen YC. MRI Evaluating Myocardial Strain of Left Ventricle: Technical Progress and Clinical Application[J]. Adv Cardiovasc Dis, 2018, 39(1): 53-57. DOI: 10.16806/j.cnki.issn.1004-3934.2018.01.013.
Rubens-Figueroa J, Cárdenas-Cardós R. Importance of cardio-oncology. How to detect suclinical heart failure[J]. Arch Cardiol Mex, 2021, 91(2): 229-234. DOI: 10.24875/ACM.19000394.
Jordan JH, Hundley WG. MRI of Cardiotoxicity[J]. Cardiol Clin, 2019, 37(4): 429-439. DOI: 10.1016/j.ccl.2019.07.007.
Akam-Venkata J, Kadiu G, Galas J, et al. Left ventricle segmental function in childhood cancer survivors using speckle-tracking echocardiography[J]. Cardiol Young, 2019, 29(12): 1494-1500. DOI: 10.1017/S1047951119002622.
Keramida K, Farmakis D. Right ventricular involvement in cancer therapy-related cardiotoxicity: the emerging role of strain echocardiography[J]. Heart Fail Rev, 2021, 26(5): 1189-1193. DOI: 10.1007/s10741-020-09938-8.
Loar RW, Colquitt JL, Rainusso NC, et al. Assessing the left atrium of childhood cancer survivors[J]. Int J Cardiovasc Imaging, 2021, 37(1): 155-162. DOI: 10.1007/s10554-020-01970-x.
Ma J, Shen ZX, Qin SK. Chinese expert consensus on the prevention and treatment of cardiotoxicity of anthracycline antineoplastic drugs (2011 edition)[J]. Chin Clin Oncol, 2011, 16(12): 1122-1129.
Lustberg MB, Reinbolt R, Addison D, et al. Early Detection of Anthracycline-Induced Cardiotoxicity in Breast Cancer Survivors With T2 Cardiac Magnetic Resonance[J/OL]. Circ Cardiovasc Imaging, 2019, 12(5): e008777 [2022-10-18]. DOI: 10.1161/CIRCIMAGING.118.008777.
Galán-Arriola C, Lobo M, Vílchez-Tschischke JP, et al. Serial Magnetic Resonance Imaging to Identify Early Stages of Anthracycline-Induced Cardiotoxicity[J]. J Am Coll Cardiol, 2019, 73(7): 779-791. DOI: 10.1016/j.jacc.2018.11.046.
Park HS, Hong YJ, Han K, et al. Ultrahigh-field cardiovascular magnetic resonance T1 and T2 mapping for the assessment of anthracycline-induced cardiotoxicity in rat models: validation against histopathologic changes[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 76 [2022-10-18]. DOI: 10.1186/s12968-021-00767-8.
Liu M, López de Juan Abad B, Cheng K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies[J/OL]. Adv Drug Deliv Rev, 2021, 173: 504-519 [2022-10-30]. DOI: 10.1016/j.addr.2021.03.021.
Neilan TG, Coelho-Filho OR, Shah RV, et al. Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy[J]. Am J Cardiol, 2013, 111(5): 717-722. DOI: 10.1016/j.amjcard.2012.11.022.
Tham EB, Haykowsky MJ, Chow K, et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling[J/OL]. J Cardiovasc Magn Reson, 2013, 15(1): 48 [2022-10-30]. DOI: 10.1186/1532-429X-15-48.
Haslbauer JD, Lindner S, Valbuena-Lopez S, et al. CMR imaging biosignature of cardiac involvement due to cancer-related treatment by T1 and T2 mapping[J/OL]. Int J Cardiol, 2019, 275: 179-186 [2022-10-30]. DOI: 10.1016/j.ijcard.2018.10.023.
Ferreira de Souza T, Quinaglia T, Neilan TG, et al. Assessment of Cardiotoxicity of Cancer Chemotherapy: The Value of Cardiac MR Imaging[J]. Magn Reson Imaging Clin N Am, 2019, 27(3): 533-544. DOI: 10.1016/j.mric.2019.04.001.
Vita T, Gräni C, Abbasi SA, et al. Comparing CMR Mapping Methods and Myocardial Patterns Toward Heart Failure Outcomes in Nonischemic Dilated Cardiomyopathy[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt2): 1659-1669. DOI: 10.1016/j.jcmg.2018.08.021.
Park CJ, Branch ME, Vasu S, et al. The Role of Cardiac MRI in Animal Models of Cardiotoxicity: Hopes and Challenges[J]. J Cardiovasc Transl Res, 2020, 13(3): 367-376. DOI: 10.1007/s12265-020-09981-8.
Mawad W, Mertens L, Pagano JJ, et al. Effect of anthracycline therapy on myocardial function and markers of fibrotic remodelling in childhood cancer survivors[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(4): 435-442. DOI: 10.1093/ehjci/jeaa093.
Kondur AK, Li T, Vaitkevicius P, et al. Quantification of myocardial iron overload by cardiovascular magnetic resonance imaging T2* and review of the literature[J/OL]. Clin Cardiol, 2009, 32(6): E55-E59 [2022-10-18]. DOI: 10.1002/clc.20310.
Dash R, Chung J, Chan T, et al. A molecular MRI probe to detect treatment of cardiac apoptosis in vivo[J]. Magn Reson Med, 2011, 66(4): 1152-1162. DOI: 10.1002/mrm.22876.
Houbois CP, Thavendiranathan P, Wintersperger BJ. Cardiovascular Magnetic Resonance Imaging: Identifying the Effects of Cancer Therapy[J]. J Thorac Imaging, 2020, 35(1): 12-25. DOI: 10.1097/RTI.0000000000000430.
Schneider C, González-Jaramillo N, Marcin T, et al. Time-Dependent Effect of Anthracycline-Based Chemotherapy on Central Arterial Stiffness: A Systematic Review and Meta-Analysis[J/OL]. Front Cardiovasc Med, 2022, 9: 873898 [2022-10-30]. DOI: 10.3389/fcvm.2022.873898.
Clayton ZS, Hutton DA, Mahoney SA, et al. Anthracycline chemotherapy-mediated vascular dysfunction as a model of accelerated vascular aging[J]. Aging Cancer, 2021, 2(1-2): 45-69. DOI: 10.1002/aac2.12033.
Mihalcea D, Florescu M, Bruja R, et al. 3echocardiographyD, stiffnessarterial, and biomarkers in early diagnosis and prediction of CHOP-induced cardiotoxicity in non-Hodgkin's lymphoma[J/OL]. Sci Rep, 2020, 10(1): 18473 [2022-10-30]. DOI: 10.1038/s41598-020-75043-3.
Zhang YF, Cui JW. Research progress of cardiotoxicity induced by chemotherapeutic drugs[J]. Chin J Clin Oncol, 2018, 45(24): 1243-1247. DOI: 10.3969/j.issn.1000-8179.2018.24.056.
Pituskin E, Mackey JR, Koshman S, et al. Multidisciplinary Approach to Novel Therapies in Cardio-Oncology Research (MANTICORE 101-Breast): A Randomized Trial for the Prevention of Trastuzumab-Associated Cardiotoxicity[J]. J Clin Oncol, 2017, 35(8): 870-877. DOI: 10.1200/JCO.2016.68.7830.
Gulati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2×2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol[J]. Eur Heart J, 2016, 37(21): 1671-1680. DOI: 10.1093/eurheartj/ehw022.
Heck SL, Mecinaj A, Ree AH, et al. Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy (PRADA): Extended Follow-Up of a 2×2 Factorial, Randomized, Placebo-Controlled, Double-Blind Clinical Trial of Candesartan and Metoprolol[J]. Circulation, 2021, 143(25): 2431-2440. DOI: 10.1161/CIRCULATIONAHA.121.054698.
Mecinaj A, Gulati G, Heck SL, et al. Rationale and design of the PRevention of cArdiac Dysfunction during Adjuvant breast cancer therapy (PRADA Ⅱ) trial: a randomized, placebo-controlled, multicenter trial[J/OL]. Cardiooncology, 2021, 7(1): 33 [2022-10-30]. DOI: 10.1186/s40959-021-00115-w.
Curigliano G, Lenihan D, Fradley M, et al. ESMO Guidelines Committee. Electronic address: Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations[J]. Ann Oncol, 2020, 31(2): 171-190. DOI: 10.1016/j.annonc.2019.10.023.
Leiner T, Bogaert J, Friedrich MG, et al. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 76 [2022-10-30]. DOI: 10.1186/s12968-020-00682-4.
Dorfman AL, Geva T, Samyn MM, et al. SCMR expert consensus statement for cardiovascular magnetic resonance of acquired and non-structural pediatric heart disease[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 44 [2022-10-30]. DOI: 10.1186/s12968-022-00873-1.

PREV The value of MR endogenous contrast T1ρ technique in the detection of myocardial fibrosis in hypertrophic cardiomyopathy
NEXT Altered characteristics of brain gray matter volume and structural covariance network in maintenance hemodialysis patients without neuropsychological disorder

Tel & Fax: +8610-67113815    E-mail: