Share this content in WeChat
Special Focus
The value of MR endogenous contrast T1ρ technique in the detection of myocardial fibrosis in hypertrophic cardiomyopathy
WANG Keyan  ZHENG Jie  ZHANG Yong  HUANG Huiyu  ZHANG Wenbo  LI Shuman  JIN Hongrui  JIN Yanan  CHENG Jingliang 

Cite this article as: Wang KY, Zheng J, Zhang Y, et al. The value of MR endogenous contrast T1ρ technique in the detection of myocardial fibrosis in hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(12): 51-57. DOI:10.12015/issn.1674-8034.2022.12.009.

[Abstract] Objective To investigate cardiac magnetic resonance (CMR) endogenous longitudinal relaxation time (T1ρ) in the diagnosis of myocardial fibrosis in patients with hypertrophic cardiomyopathy (HCM).Materials and Methods Sixty adult HCM patients and 20 age and sex matched healthy volunteers were prospectively included. All subjects received T1 mapping and T1ρ. According to whether the ventricular wall segments were hypertrophic, HCM was further divided into HCM ventricular wall normal thickness group (HCM-N) and HCM ventricular wall hypertrophic thickness (HCM-H) group. The initial T1 mapping, ECV and T1ρ were measured. The differences among healthy control group, HCM-N and HCM-H groups were analyzed and compared by one-way ANOVA. The consistency between extracellular volume fraction (ECV) and T1ρ were analyzed by Pearson. In addition, ECV as the reference, the value of T1ρ in the detection of myocardial fibrosis in HCM were analyzed.Results ECV gradually increased from control group to HCM-N group and to HCM-H group [Control (27.4±2.8) % vs. HCM-N (31.5±4.8) % vs. HCM-H (37.2±7.2) %; F=64.219, P<0.001]. T1ρ mapping has the same trend as ECV [Control (38.4±1.5) ms vs. HCM-N (41.6±5.1) ms vs. HCM-H (47.4±7.9) ms; F=81.399, P<0.001]. There were significant differences in ECV, T1ρ mapping between control group and HCM-N group, control group and HCM-H group, HCM-N group and HCM-H group (P<0.001). There was significant difference in native T1 among control group, HCM-N group and HCM-H group [Control (1270.1±92.0) ms vs. HCM-N (1292.4±127.0) ms vs. HCM-H (1338.2±103.3) ms; F=9.921, P<0.001]. There was no statistical difference in native T1 mapping between HCM-N and control group, but there were significant differences between HCM-N group and HCM-H group, and between HCM-H and control group. The consistency between ECV and T1ρ is 0.734.Conclusions CMR endogenous T1ρ could sensitively identify myocardial fibrosis in HCM patients,, and has potential clinical value in evaluating myocardial fibrosis.
[Keywords] hypertrophic cardiomyopathy;myocardial fibrosis;wall thickness, extracellular volume fraction;cardiac magnetic resonance;magnetic resonance imaging;endogenous contrast;T1ρ mapping;T1 mapping

WANG Keyan1   ZHENG Jie2   ZHANG Yong1   HUANG Huiyu1   ZHANG Wenbo1   LI Shuman1   JIN Hongrui1   JIN Yanan1   CHENG Jingliang1*  

1 Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China

2 Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis 63110, USA

Cheng JL, E-mail:

Conflicts of interest   None.

Received  2022-08-10
Accepted  2022-12-05
DOI: 10.12015/issn.1674-8034.2022.12.009
Cite this article as: Wang KY, Zheng J, Zhang Y, et al. The value of MR endogenous contrast T1ρ technique in the detection of myocardial fibrosis in hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(12): 51-57. DOI:10.12015/issn.1674-8034.2022.12.009.

Antunes MO, Scudeler TL. Hypertrophic cardiomyopathy[J/OL]. Int J Cardiol Heart Vasc, 2020, 27(4): 100503 [2022-07-20]. DOI: 10.1016/j.ijcha.2020.100503.
Fahmy Ahmed S, Rowin Ethan J, Arafati A, et al. Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 40 [2022-07-20]. DOI: 10.1186/s12968-022-00869-x.
Bittencourt MI, Cader SA, Araújo DV, et al. Role of myocardial fibrosis in hypertrophic cardiomyopathy: a systematic review and updated meta-analysis of risk markers for sudden death[J]. Arq Bras Cardiol, 2019, 112(3): 281-289. DOI: 10.5935/abc.20190045.
McLellan AJA, Ellims AH, Prabhu S, et al. Diffuse ventricular fibrosis on cardiac magnetic resonance imaging associates with ventricular tachycardia in patients with hypertrophic cardiomyopathy[J]. J Cardiovasc Electrophysiol, 2016, 27(5): 571-580. DOI: 10.1111/jce.12948.
Klopotowski M, Kukula K, Malek LA, et al. The value of cardiac magnetic resonance and distribution of late gadolinium enhancement for risk stratification of sudden cardiac death in patients with hypertrophic cardiomyopathy[J]. J Cardiol, 2016, 68(1): 49-56. DOI: 10.1016/j.jjcc.2015.07.020.
Yanyan S, Xuanye B, Liang C, et al. Reduced myocardial septal function assessed by cardiac magnetic resonance feature tracking in patients with hypertrophic obstructive cardiomyopathy: associated with histological myocardial fibrosis and ventricular arrhythmias[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(8): 1006-1015. DOI: 10.1093/ehjci/jeac032.
Ho CY, Lopez B, Coelho-Filho OR, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy[J]. N Engl J Med, 2010, 363(6): 552-563. DOI: 10.1056/NEJMoa1002659.
Bradley SL, Yanling Z, Kohei H, et al. Comprehensive Proteomics Profiling Identifies Patients With Late Gadolinium Enhancement on Cardiac Magnetic Resonance Imaging in the Hypertrophic Cardiomyopathy Population[J/OL]. Front Cardiovasc Med, 2022, 9: 839409 [2022-07-20]. DOI: 10.3389/fcvm.2022.839409.
Kim JB, Porreca GJ, Song L, et al. Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy[J]. Science, 2007, 316(5830): 1481-1484. DOI: 10.1126/science.1137325.
Xu J, Zhuang BY, Sirajuddin A, et al. MRI T1 Mapping in Hypertrophic Cardiomyopathy: Evaluation in Patients Without Late Gadolinium Enhancement and Hemodynamic Obstruction[J]. Radiology, 2020, 294(2): 275-286. DOI: 10.1148/radiol.2019190651.
Cui C, Zhao SH. Interpretation of Expert Consensus from Society for Cardiovascular Magnetic Resonance and CMR Working Group of the European Society of Cardiology on T1 Mapping and Extracellular Volume Quantification[J]. Adv Cardiovasc Dis, 2014, 35(3): 271-275. DOI: 10.3969/j.issn.1004-3934.2014.03.001.
Puntmann VO, Peker E, Chandrashekhar Y, et al. T1 mapping in characterizing myocardial disease: a comprehensive review[J]. Circ Res, 2016, 119(2): 277-299. DOI: 10.1161/CIRCRESAHA.116.307974.
Sorin G, Henning S, Moritz M, et al. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 92 [2022-07-20]. DOI: 10.1186/s12968-021-00775-8.
Robinson AA, Chow K, Salerno M. Myocardial T1 and ECV measurement: underlying concepts and technical considerations[J]. JACC Cardiovasc Imaging, 2019, 12: 2332-2344. DOI: 10.1016/j.jcmg.2019.06.031.
Marckmann P, Skov L, Rossen K, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging[J]. J Am Soc Nephrol, 2006, 17(9): 2359-2362. DOI: 10.1681/ASN.2006060601.
Han Y, Liimatainen T, Gorman RC, et al. Assessing myocardial disease using T1rho MRI[J/OL]. Curr Cardiovasc Imaging Rep, 2014, 7(2): 9248 [2022-07-20]. DOI: 10.1007/s12410-013-9248-7.
Muthupillai R, Flamm SD, Wilson JM, et al. Acute myocardial infarction: tissue characterization with T1ρ-weighted MR imaging-initial experience[J]. Radiology, 2004, 232(2): 606-610. DOI: 10.1148/radiol.2322030334.
Witschey WR, Zsido GA, Koomalsingh K, et al. In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2012, 14(1): 37 [2022-07-20]. DOI: 10.1186/1532-429X-14-37.
van Oorschot JW, Güçlü F, de Jong S, et al. Endogenous assessment of diffuse myocardial fibrosis in patients with T1ρ-mapping[J]. J Magn Reson Imaging, 2017, 45(1): 132-138. DOI: 10.1002/jmri.25340.
Elizabeth WT, Srikant KI, Michael PS, et al. Endogenous T1ρ cardiovascular magnetic resonance in hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 120 [2022-07-20]. DOI: 10.1186/s12968-021-00813-5.
Keyan W,Wenbo Z, Shuman L, et al. Noncontrast T1ρ dispersion imaging is sensitive to diffuse fibrosis: A cardiovascular magnetic resonance study at 3T in hypertrophic cardiomyopathy[J]. Magn Reson Imaging, 2022, 91: 1-8. DOI: 10.1016/j.mri.2022.05.001.
Zhang Y, Zeng W, Chen W, et al. MR extracellular volume mapping and non-contrast T1ρ mapping allow early detection of myocardial fibrosis in diabetic monkeys[J]. Eur Radiol, 2019, 29(6): 3006-3016. DOI: 10.1007/s00330-018-5950-9.
Seferović PM, Polovina M, Bauersachs J, et al. Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail, 2019, 21(5): 553-576. DOI: 10.1093/eurheartj/ehab834.
Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2014, 35(39): 2733-2779. DOI: 10.1093/eurheartj/ehu284.
Gabriella C, Abhiyan B, Rüdiger B, et al. T mapping performance and measurement repeatability: results from the multi-national T mapping standardization phantom program (T1MES)[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 31 [2022-07-20]. DOI: 10.1186/s12968-020-00613-3.
Gottbrecht M, Kramer CM, Salerno M. Native T1 and extracellular volume measurements by cardiac MRI in healthy adults: a meta-analysis[J]. Radiology, 2019, 290(2): 317-326. DOI: 10.1148/radiol.2018180226.
Kettunen MI, Gröhn OH, Penttonen M, et al. Cerebral T1rho relaxation time increases immediately upon global ischemia in the rat independently of blood glucose and anoxic depolarization[J]. Magn Reson Med, 2001, 46: 565-572. DOI: 10.1002/mrm.1228.
Johannessen W, Auerbach JD, Wheaton AJ, et al. Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging[J]. Spine (Phila Pa 1976), 2006, 31: 1253-1257. DOI: 10.1097/01.brs.0000217708.54880.51.
Barry JM, Milind YD, Rick AN, et al. Management of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2022, 79(4): 390-414. DOI: 10.1016/j.jacc.2021.11.021.
Fröjdh F, Fridman Y, Bering P, et al. Extracellular volume and global longitudinal strain both associate with outcomes but correlate minimally[J]. JACC Cardiovasc Imaging, 2020, 13(11): 2343-2354. DOI: 10.1016/j.jcmg.2020.04.026.
Kamesh Iyer S, Moon B, Hwuang E, et al. Accelerated free-breathing 3D T1ρ cardiovascular magnetic resonance using multicoil compressed sensing[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1): 5 [2022-07-20]. DOI: 10.1186/s12968-018-0507-2.
Qi H, Bustin A, Kuestner T, et al. Respiratory motion-compensated high-resolution 3D whole-heart T1ρ mapping[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 12 [2022-07-20]. DOI: 10.1186/s12968-020-0597-5.

PREV Assessment value of peak diastolic strain rate based on CMR-FT imaging in hypertrophic cardiomyopathy with preserved ejection fraction and its relationship with cardiac troponin T
NEXT The evaluation of myocardial toxicity in children with leukemia after chemotherapy by MRI

Tel & Fax: +8610-67113815    E-mail: