Share:
Share this content in WeChat
X
Special Focus
Assessment value of peak diastolic strain rate based on CMR-FT imaging in hypertrophic cardiomyopathy with preserved ejection fraction and its relationship with cardiac troponin T
ZHANG Lisha  YANG Ruixue  WANG Lei  GAO Fabao 

Cite this article as: Zhang LS, Yang RX, Wang L, et al. Assessment value of peak diastolic strain rate based on CMR-FT imaging in hypertrophic cardiomyopathy with preserved ejection fraction and its relationship with cardiac troponin T[J]. Chin J Magn Reson Imaging, 2022, 13(12): 45-50. DOI:10.12015/issn.1674-8034.2022.12.008.


[Abstract] Objective To investigate the assessment value of peak diastolic strain rate (PDSR) in hypertrophic cardiomyopathy with preserved ejection fraction (HCMpEF) and its relationship with cardiac troponin T (cTnT).Materials and Methods The clinical data of 64 HCMpEF patients (patient group) and 33 healthy controls (control group) examined with 3.0 T cardiac magnetic resonance (CMR) (HCMpEF patients were also tested for cTnT) were retrospective analyzed. Global and segment PDSR of left ventricular were obtained by post-processing CMR images with CVI.42 software, and the above data were statistically analyzed with the corresponding statistical analysis methods.Results Compared with healthy people, all global and segmental PDSR in patient group were significantly damaged (P<0.001). And in patient group, all global and some segmental PDSR were significantly related to cTnT. Among them, the best correlation with cTnT was global radial PDSR (GR-PDSR; r=0.568, P<0.001), with medium-related. Analysis through the receiver operating characteristic curve, GR-PDSR [area under the curve (AUC): 0.79, sensitivity: 91%, specificity: 65%] showed the highest predictive value for elevated cTnT in all PDSR. In addition, all global and segmental PDSR except apical radial PDSR (AR-PDSR) demonstrated moderate and above intra- and inter-observer reproducibility.Conclusions Global and segmental PDSR can identify sub-clinical myocardial damage in HCMpEF patients and screen out more severe HCMpEF patients, and can also predict the increase of cTnT level in HCMpEF patients.
[Keywords] hypertrophic cardiomyopathy;cardiac troponin T;peak diastolic strain rate;ejection fraction;cardiac magnetic resonance;magnetic resonance imaging

ZHANG Lisha1   YANG Ruixue1   WANG Lei2   GAO Fabao1, 2*  

1 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China

2 Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu 610044, China

Gao FB, E-mail: gaofabao@wchscu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81930046, 81829003).
Received  2022-08-02
Accepted  2022-11-28
DOI: 10.12015/issn.1674-8034.2022.12.008
Cite this article as: Zhang LS, Yang RX, Wang L, et al. Assessment value of peak diastolic strain rate based on CMR-FT imaging in hypertrophic cardiomyopathy with preserved ejection fraction and its relationship with cardiac troponin T[J]. Chin J Magn Reson Imaging, 2022, 13(12): 45-50. DOI:10.12015/issn.1674-8034.2022.12.008.

[1]
Ommen SR, Semsarian C. Hypertrophic cardiomyopathy: a practical approach to guideline directed management[J]. Lancet, 2021, 398(10316): 2102-2108. DOI: 10.1016/s0140-6736(21)01205-8.
[2]
Bonaventura J, Polakova E, Vejtasova V, et al. Genetic testing in patients with hypertrophic cardiomyopathy[J/OL]. Int J Mol Sci, 2021, 22(19): 10401 [2022-08-04]. https://doi.org/10.3390/ijms221910401. DOI: 10.3390/ijms221910401.
[3]
Ranjbarvaziri S, Kooiker KB, Ellenberger M, et al. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy[J]. Circulation, 2021, 144(21): 1714-1731. DOI: 10.1161/circulationaha.121.053575.
[4]
Hanneman K. The clinical significance of cardiac MRI late gadolinium enhancement in hypertrophic cardiomyopathy[J]. Radiology, 2022, 302(2): 307-308. DOI: 10.1148/radiol.2021212214.
[5]
Matsumoto AY, Arteaga E, Ianni BM, et al. Relationships among exercise capacity, hypertrophy, and left ventricular diastolic function in nonobstructive hypertrophic cardiomyopathy[J]. Am Heart J, 2005, 150(1): 144-149. DOI: 10.1016/j.ahj.2004.08.021.
[6]
Seferović PM, Polovina M, Bauersachs J, et al. Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail, 2019, 21(5): 553-576. DOI: 10.1002/ejhf.1461.
[7]
Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies[J]. N Engl J Med, 2011, 364(17): 1643-1656. DOI: 10.1056/NEJMra0902923.
[8]
Li ZL, He S, Xia CC, et al. Global longitudinal diastolic strain rate as a novel marker for predicting adverse outcomes in hypertrophic cardiomyopathy by cardiac magnetic resonance tissue tracking[J/OL]. Clin Radiol, 2021, 76(1): 78.e19-e25 [2020-08-04]. https://doi.org/10.1016/j.crad.2020.08.019. DOI: 10.1016/j.crad.2020.08.019.
[9]
Cavus E, Muellerleile K, Schellert S, et al. CMR feature tracking strain patterns and their association with circulating cardiac biomarkers in patients with hypertrophic cardiomyopathy[J]. Clin Res Cardiol, 2021, 110(11): 1757-1769. DOI: 10.1007/s00392-021-01848-5.
[10]
Li H, Qu Y, Metze P, et al. Quantification of biventricular myocardial strain using CMR feature tracking: reproducibility in small animals[J/OL]. Biomed Res Int, 2021, 2021: 8492705 [2022-08-04]. https://doi.org/10.1155/2021/8492705. DOI: 10.1155/2021/8492705.
[11]
China Adult Hypertrophic Cardiomyopathy Diagnosis and Treatment Guideline Writing Group, Chinese Journal of Cardiology Editorial Committee. Diagnosis and Treatment Guideline of Chinese Adult Hypertrophic Cardiomyopathy[J]. Chin J Cardiol, 2017, 45(12): 1015-1032. DOI: 10.3760/cma.j.issn.0253-3758.2017.12.005.
[12]
Saenger AK, Beyrau R, Braun S, et al. Multicenter analytical evaluation of a high-sensitivity troponin T assay[J]. Clin Chim Acta, 2011, 412(9-10): 748-754. DOI: 10.1016/j.cca.2010.12.034.
[13]
Bozsik B, Tóth E, Polyák I, et al. Reproducibility of lesion count in various subregions on MRI scans in multiple sclerosis[J/OL]. Front Neurol, 2022, 13: 843377 [2022-08-04]. https://doi.org/10.3389/fneur.2022.843377. DOI: 10.3389/fneur.2022.843377.
[14]
Hensley N, Dietrich J, Nyhan D, et al. Hypertrophic cardiomyopathy: a review[J]. Anesth Analg, 2015, 120(3): 554-569. DOI: 10.1213/ane.0000000000000538.
[15]
Shah PM. Hypertrophic cardiomyopathy and diastolic dysfunction[J]. J Am Coll Cardiol, 2003, 42(2): 286-287. DOI: 10.1016/s0735-1097(03)00582-5.
[16]
Hammersley DJ, Jones RE, Mach L, et al. Cardiovascular magnetic resonance in heritable cardiomyopathies[J]. Heart Fail Clin, 2021, 17(1): 25-39. DOI: 10.1016/j.hfc.2020.08.004.
[17]
Sivalokanathan S. The role of cardiovascular magnetic resonance imaging in the evaluation of hypertrophic cardiomyopathy[J/OL]. Diagnostics (Basel), 2022, 12(2): 314. https://doi.org/10.3390/diagnostics12020314. DOI: 10.3390/diagnostics12020314.
[18]
Domenech-Ximenos B, Sanz-de la Garza M, Sepulveda-Martinez Á, et al. Assessment of myocardial deformation with CMR: a comparison with ultrasound speckle tracking[J]. Eur Radiol, 2021, 31(10): 7242-7250. DOI: 10.1007/s00330-021-07857-2.
[19]
Xu J, Yang W, Zhao S, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[20]
Yang L, Zhang L, Cao S, et al. Advanced myocardial characterization in hypertrophic cardiomyopathy: feasibility of CMR-based feature tracking strain analysis in a case-control study[J]. Eur Radiol, 2020, 30(11): 6118-6128. DOI: 10.1007/s00330-020-06922-6.
[21]
Maceira AM, Guardiola S, Ripoll C, et al. Detection of subclinical myocardial dysfunction in cocaine addicts with feature tracking cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 70 [2022-08-04]. https://doi.org/10.1186/s12968-020-00663-7. DOI: 10.1186/s12968-020-00663-7.
[22]
Schuster A, Backhaus SJ, Stiermaier T, et al. Impact of right atrial physiology on heart failure and adverse events after myocardial infarction[J/OL]. J Clin Med, 2020, 9(1): 210 [2022-08-04]. https://doi.org/10.3390/jcm9010210. DOI: 10.3390/jcm9010210.
[23]
Małek Ł A, Mazurkiewicz Ł, Marszałek M, et al. Deformation parameters of the heart in endurance athletes and in patients with dilated cardiomyopathy-a cardiac magnetic resonance study[J/OL]. Diagnostics (Basel), 2021, 11(2): 374 [2022-08-04]. https://doi.org/10.3390/diagnostics11020374. DOI: 10.3390/diagnostics11020374.
[24]
Shenoy C, Romano S, Hughes A, et al. Cardiac magnetic resonance feature tracking global longitudinal strain and prognosis after heart transplantation[J]. JACC Cardiovasc Imaging, 2020, 13(9): 1934-1942. DOI: 10.1016/j.jcmg.2020.04.004.
[25]
Yang Y, Yin G, Jiang Y, et al. Quantification of left atrial function in patients with non-obstructive hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking imaging: a feasibility and reproducibility study[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 1 [2022-08-04]. https://doi.org/10.1186/s12968-019-0589-5. DOI: 10.1186/s12968-019-0589-5.
[26]
Liu S, Li Y, Zhao Y, et al. The combination of feature tracking and late gadolinium enhancement for identification between hypertrophic cardiomyopathy and hypertensive heart disease[J/OL]. Front Cardiovasc Med, 2022, 9: 865615 [2022-08-04], https://doi.org/10.3389/fcvm.2022.865615. DOI: 10.3389/fcvm.2022.865615.
[27]
Hinojar R, Fernández-Golfín C, González-Gómez A, et al. Prognostic implications of global myocardial mechanics in hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking. Relations to left ventricular hypertrophy and fibrosis[J]. Int J Cardiol, 2017, 249: 467-472. DOI: 10.1016/j.ijcard.2017.07.087.
[28]
Everaars H, Robbers L, Götte M, et al. Strain analysis is superior to wall thickening in discriminating between infarcted myocardium with and without microvascular obstruction[J]. Eur Radiol, 2018, 28(12): 5171-5181. DOI: 10.1007/s00330-018-5493-0.
[29]
Moreno V, Hernández-Romero D, Vilchez JA, et al. Serum levels of high-sensitivity troponin T: a novel marker for cardiac remodeling in hypertrophic cardiomyopathy[J]. J Card Fail, 2010, 16(12): 950-956. DOI: 10.1016/j.cardfail.2010.07.245.
[30]
Kubo T, Kitaoka H, Yamanaka S, et al. Significance of high-sensitivity cardiac troponin T in hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2013, 62(14): 1252-1259. DOI: 10.1016/j.jacc.2013.03.055.
[31]
Gawor M, Śpiewak M, Kubik A, et al. Circulating biomarkers of hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy assessed by cardiac magnetic resonance[J]. Biomarkers, 2018, 23(7): 676-682. DOI: 10.1080/1354750x.2018.1474261.
[32]
Kubo T, Ochi Y, Baba Y, et al. Elevation of high-sensitivity cardiac troponin T and left ventricular remodelling in hypertrophic cardiomyopathy[J]. ESC Heart Fail, 2020, 7(6): 3593-3600. DOI: 10.1002/ehf2.12852.
[33]
Gommans DHF, Cramer GE, Fouraux MA, et al. Usefulness of high-sensitivity cardiac troponin T to predict long-term outcome in patients with hypertrophic cardiomyopathy[J]. Am J Cardiol, 2021, 152: 120-124. DOI: 10.1016/j.amjcard.2021.04.040.

PREV The value of myocardial contraction fraction based on CMR film sequence in hypertrophic cardiomyopathy with preserved ejection fraction
NEXT The value of MR endogenous contrast T1ρ technique in the detection of myocardial fibrosis in hypertrophic cardiomyopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn