Share:
Share this content in WeChat
X
Special Focus
Differential diagnostic value of T1 mapping and tissue tracking techniques in diseases associated with left ventricular hypertrophy
ZHANG Xinna  JIANG Yuqi  ZHAO Lingling  SHU Jingwei  YU Honglin  YANG Panpan  LIU Xiaoqin  ZHAO Ren  QIAN Yinfeng  YU Yongqiang  LI Xiaohu 

Cite this article as: Zhang XN, Jiang YQ, Zhao LL, et al. Differential diagnostic value of T1 mapping and tissue tracking techniques in diseases associated with left ventricular hypertrophy[J]. Chin J Magn Reson Imaging, 2022, 13(12): 32-37. DOI:10.12015/issn.1674-8034.2022.12.006.


[Abstract] Objective To study the value of T1 mapping by cardiac magnetic resonance (CMR) and tissue tracking (TT) in the differential diagnosis of cardiac amyloidosis (CA), hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD).Materials and Methods Twenty patients were recruited in HCM group, CA group and HHD group (combined case group), while 25 healthy volunteers were contained in healthy control (HC) group. Parameters of each group (HCM, CA, HHD and HC group) were retrospectively analyzed. One-way ANOVA and Kruskal-Wallis tests were used to compare native T1 values, relative apical sparing of strain (RAS), global and segmental longitudinal strain (LS), circumferential strain (CS), and radial strain (RS) between the four groups.Results The native T1 values in the CA group [(1473.05±16.70) ms] were significantly higher than those in the HCM [(1322.25±8.48) ms], HHD [(1289.05±9.18) ms] and HC groups [(1100.20±8.42) ms], and the native T1 values in the HCM group were higher than those in the HHD group, and the differences were statistically significant (P<0.05). Global and segmental strains were lower in the case group than in the HC group, with statistically significant differences (P<0.05). The CA relative apical radial strain (RASRS) ratio was 0.77±0.05 and the relative apical longitudinal strain (RASLS) ratio was 0.93±0.04. In the differential diagnosis of CA and HCM, the area under the curve (AUC) of native T1 value, basal radial strain (BRS), basal longitudinal strain (BLS), RASRS and RASLS were 0.95, 0.97, 0.92, 0.84 and 0.82 (P<0.05). In the differential diagnosis of CA and HHD, the AUC of native T1, BRS, BLS, RASRS and RASLS were 0.97, 0. 74, 0.79, 0.73 and 0.80, respectively (P<0.05). In the differential diagnosis of HCM and HHD, the AUC of native T1 and global longitudinal strain (GLS) were 0.74 and 0.69, respectively, and combining these two parameters resulted in a combined diagnostic index with an AUC of 0.81.Conclusions Significantly higher native T1 values and preserved relative apical strain can effectively discriminate CA from HCM and HHD, with BRS having the highest diagnostic efficacy in CA and HCM and native T1 in CA and HHD; native T1 values combined with GLS can help further improve the differential diagnostic efficacy in HCM and HHD. Based on the native T1 values of myocardial histological imaging parameters and myocardial strain parameters GLS and BRS measured by CMR can effectively identify HCM, CA and HHD, which can provide new ideas for the diagnosis of myocardial thickening disease etiology and treatment decisions.
[Keywords] hypertrophic cardiomyopathy;cardiac amyloidosis;hypertensive heart disease;cardiac magnetic resonance;magnetic resonance imaging;T1 mapping;tissue tracking;differential diagnosis

ZHANG Xinna1   JIANG Yuqi2   ZHAO Lingling2   SHU Jingwei1   YU Honglin1   YANG Panpan2   LIU Xiaoqin1   ZHAO Ren3   QIAN Yinfeng1   YU Yongqiang1   LI Xiaohu1*  

1 Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

2 Department of Radiology, Fuyang Hospital, Anhui Medical University, Fuyang 236000, China

3 Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

Li XH, E-mail: lixiaohu@ahmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071897).
Received  2022-08-22
Accepted  2022-11-29
DOI: 10.12015/issn.1674-8034.2022.12.006
Cite this article as: Zhang XN, Jiang YQ, Zhao LL, et al. Differential diagnostic value of T1 mapping and tissue tracking techniques in diseases associated with left ventricular hypertrophy[J]. Chin J Magn Reson Imaging, 2022, 13(12): 32-37. DOI:10.12015/issn.1674-8034.2022.12.006.

[1]
Raphael CE, Mitchell F, Kanaganayagam GS, et al. Cardiovascular magnetic resonance predictors of heart failure in hypertrophic cardiomyopathy: the role of myocardial replacement fibrosis and the microcirculation[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 26 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/33685501/. DOI: 10.1186/s12968-021-00720-9.
[2]
Sennott J, Ananthasubramaniam K. Multimodality imaging approach to cardiac amyloidosis: part 2[J]. Heart Fail Rev, 2022, 27(5): 1515-1530. DOI: 10.1007/s10741-021-10179-6.
[3]
Tadic M, Cuspidi C, Plein S, et al. Comprehensive assessment of hypertensive heart disease: cardiac magnetic resonance in focus[J]. Heart Fail Rev, 2021, 26(6): 1383-1390. DOI: 10.1007/s10741-020-09943-x.
[4]
Burrage MK, Ferreira VM. Cardiovascular Magnetic Resonance for the Differentiation of Left Ventricular Hypertrophy[J]. Curr Heart Fail Rep, 2020, 17(5): 192-204. DOI: 10.1007/s11897-020-00481-z.
[5]
Hu R, Li R, Yang PC, et al. Advances in the clinical application of cardiac magnetic resonance in the diagnosis of left ventricular hypertrophy[J]. Chin J Magn Reson Imaging, 2022, 13(5): 151-153, 170. DOI: 10.12015/issn.1674-8034.2022.05.032.
[6]
Vigneault DM, Yang E, Jensen PJ, et al. Left Ventricular Strain Is Abnormal in Preclinical and Overt Hypertrophic Cardiomyopathy: Cardiac MR Feature Tracking[J]. Radiology, 2019, 290(3): 640-648. DOI: 10.1148/radiol.2018180339.
[7]
Chen YF, Zhou YX, Liu PF. Study on the relationship between epicardial adipose tissue and left ventricular remodeling in hypertrophic cardiomyopathy based on T1 mapping technology[J]. Chin J Magn Reson Imaging, 2021, 12(6): 34-37. DOI: 10.12015/issn.1674-8034.2021.06.007.
[8]
Takeda M, Amano Y, Tachi M, et al. MRI differentiation of cardiomyopathy showing left ventricular hypertrophy and heart failure: differentiation between cardiac amyloidosis, hypertrophic cardiomyopathy, and hypertensive heart disease[J]. Jpn J Radiol, 2013, 31(10): 693-700. DOI: 10.1007/s11604-013-0238-0.
[9]
Zhao SH. To meet the challenge of new cardiac magnetic resonance imaging technology[J]. Chin J Med imaging Technol, 2017, 33(8): 1125-1128. DOI: 10.13929/j.1003-3289.201707120.
[10]
Wu X, Tang L, Deng Q, et al. The feasibility study of MRI texture analysis in predicting delayed enhancement status in cardiac amyloidosis[J]. Chin J Magn Reson Imaging, 2021, 12(12): 6-11. DOI: 10.12015/issn.1674-8034.2021.12.002.
[11]
Xia H, Yeung DF, Di Stefano C, et al. Ventricular strain analysis in patients with no structural heart disease using a vendor-independent speckle-tracking software[J/OL]. BMC Cardiovasc Disord, 2020, 20(1): 274 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/32503490/. DOI: 10.1186/s12872-020-01559-1.
[12]
Li X, Wang H, Zhao R, et al. Elevated Extracellular Volume Fraction and Reduced Global Longitudinal Strains in Participants Recovered from COVID-19 without Clinical Cardiac Findings[J/OL]. Radiology, 2021, 299(2): E230-E240 [2022-08-10]. https://doi.org/10.1148/radiol.2021203998. DOI: 10.1148/radiol.2021203998.
[13]
Aquaro GD, Corsi E, Todiere G, et al. Magnetic Resonance for Differential Diagnosis of Left Ventricular Hypertrophy: Diagnostic and Prognostic Implications[J/OL]. J Clin Med, 2022, 11(3): 651 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/35160102/. DOI: 10.3390/jcm11030651.
[14]
Ran LP, Huang L, Zhao PJ, et al. Differential diagnostic value of non contrast enhanced longitudinal relaxation time quantitative imaging of cardiac MR in left ventricular hypertrophy[J] Chin J Radiol, 2018, 52(5): 374-378. DOI: 10.3760/cma.j.issn.1005-1201.2018.05.010.
[15]
Guo YY, Tan LH, Jiang MC, et al. Evaluation of myocardial strain difference between myocardial amyloidosis and other left ventricular hypertrophy diseases by cardiovascular magnetic resonance tissue tracking technique[J]. Chin J Med Imaging Technol, 2020, 36(3): 382-386. DOI: 10.13929/j.issn.1003-3289.2020.03.015.
[16]
Neisius U, Myerson L, Fahmy AS, et al. Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy[J/OL]. PLoS One, 2019, 14(8): e221061 [2022-08-11]. https://doi.org/10.1371/journal.pone.0221061. DOI: 10.1371/journal.pone.0221061.
[17]
Korthals D, Chatzantonis G, Bietenbeck M, et al. CMR-based T1-mapping offers superior diagnostic value compared to longitudinal strain-based assessment of relative apical sparing in cardiac amyloidosis[J/OL]. Sci Rep, 2021, 11(1): 15521 [2022-08-11]. https://pubmed.ncbi.nlm.nih.gov/34330967/. DOI: 10.1038/s41598-021-94650-2.
[18]
Guo YY, Tan LH, Zeng M, et al. Quantitative assessment of left ventricular strain in amyloidosis by magnetic resonance tissue tracing[J]. J Clin Radiol, 2020, 39(5): 908-912. DOI: 10.13437/j.cnki.jcr.2020.05.014.
[19]
Smiseth OA, Torp H, Opdahl A, et al. Myocardial strain imaging: how useful is it in clinical decision making?[J]. Eur Heart J, 2016, 37(15): 1196-1207. DOI: 10.1093/eurheartj/ehv529.
[20]
Gastl M, Lachmann V, Christidi A, et al. Cardiac magnetic resonance T2 mapping and feature tracking in athlete's heart and HCM[J]. Eur Radiol, 2021, 31(5): 2768-2777. DOI: 10.1007/s00330-020-07289-4.
[21]
Cui Y, Cao YK, Liu J, et al. Quantitative evaluation of myocardial fibrosis and deformation in patients with hypertrophic cardiomyopathy by cardiac magnetic resonance T1 mapping and feature tracking[J]. J Clin Cardiol, 2020, 36(9): 856-862. DOI: 10.13201/j.issn.1001-1439.2020.09.017.
[22]
Taylor AJ, Salerno M, Dharmakumar R, et al. T1 Mapping: Basic Techniques and Clinical Applications[J]. JACC Cardiovasc Imaging, 2016, 9(1): 67-81. DOI: 10.1016/j.jcmg.2015.11.005.
[23]
Sado DM, Flett AS, Banypersad SM, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease[J]. Heart, 2012, 98(19): 1436-1441. DOI: 10.1136/heartjnl-2012-302346.
[24]
Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 Mapping for the Diagnosis of Cardiac Amyloidosis[J]. JACC Cardiovasc Imaging, 2013, 6(4): 488-497. DOI: 10.1016/j.jcmg.2012.11.013.
[25]
Rodrigues JCL, Rohan S, Ghosh Dastidar A, et al. Hypertensive heart disease versus hypertrophic cardiomyopathy: multi-parametric cardiovascular magnetic resonance discriminators when end-diastolic wall thickness≥15 mm[J]. Eur Radiol, 2017, 27(3): 1125-1135. DOI: 10.1007/s00330-016-4468-2.
[26]
Hinojar R, Varma N, Child N, et al. T1 Mapping in Discrimination of Hypertrophic Phenotypes: Hypertensive Heart Disease and Hypertrophic Cardiomyopathy[J/OL]. Circ Cardiovasc Imaging, 2015, 8(12): e003285 [2022-08-10]. https://doi.org/10.1161/CIRCIMAGING.115.003285. DOI: 10.1161/CIRCIMAGING.115.003285.
[27]
Williams LK, Forero JF, Popovic ZB, et al. Patterns of CMR measured longitudinal strain and its association with late gadolinium enhancement in patients with cardiac amyloidosis and its mimics[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 61 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/28784140/. DOI: 10.1186/s12968-017-0376-0.
[28]
Scatteia A, Baritussio A, Bucciarelli-Ducci C. Strain imaging using cardiac magnetic resonance[J]. Heart Fail Rev, 2017, 22(4): 465-476. DOI: 10.1007/s10741-017-9621-8.
[29]
Liu YH, Li W, Ouyang LN, et al. Preliminary study on left ventricular function in patients with hypertrophic cardiomyopathy with preserved ejection fraction by cardiac magnetic resonance tissue feature tracking technique[J]. Chin J Magn Reson Imaging, 2022, 13(1): 31-36. DOI: 10.12015/issn.1674-8034.2022.01.007.
[30]
Li CF, Chen WJ, Xie RG, et al. Magnetic resonance characteristic analysis of cardiac amyloidosis[J]. J Chin Pract Diagn Ther, 2021, 35(10): 988-990. DOI: 10.13507/j.issn.1674-3474.2021.10.005.
[31]
Bravo PE, Fujikura K, Kijewski MF, et al. Relative Apical Sparing of Myocardial Longitudinal Strain Is Explained by Regional Differences in Total Amyloid Mass Rather Than the Proportion of Amyloid Deposits[J]. JACC Cardiovasc Imaging, 2019, 12(7): 1165-1173. DOI: 10.1016/j.jcmg.2018.06.016.
[32]
Pagourelias ED, Mirea O, Duchenne J, et al. Echo Parameters for Differential Diagnosis in Cardiac Amyloidosis[J/OL]. Circ Cardiovasc Imaging, 2017, 10(3): e005588 [2022-08-12]. https://doi.org/10.1161/CIRCIMAGING.116.005588. DOI: 10.1161/CIRCIMAGING.116.005588.
[33]
Senapati A, Sperry BW, Grodin JL, et al. Prognostic implication of relative regional strain ratio in cardiac amyloidosis[J]. Heart, 2016, 102(10): 748-754. DOI: 10.1136/heartjnl-2015-308657.

PREV Clinical value of CMR left ventricular long-axis strain in predicting LGE in cardiac amyloidosis secondary to multiple myeloma
NEXT The value of myocardial contraction fraction based on CMR film sequence in hypertrophic cardiomyopathy with preserved ejection fraction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn