Share this content in WeChat
Myocardial fibrosis CMR and its application progress in diabetic cardiomyopathy
LIANG Jiuping  ZENG Xiaolin  XU Xi  ZHU Yanjie 

Cite this article as: Liang JP, Zeng XL, Xu X, et al. Myocardial fibrosis CMR and its application progress in diabetic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(11): 145-148. DOI:10.12015/issn.1674-8034.2022.11.029.

[Abstract] Diabetic cardiomyopathy (DbCM) early intervention measures can prevent or even reverse the changes in DbCM, prevent the remodeling of the heart structure and improve the diastolic function of the heart. Therefore, through the detection and evaluation of cardiac function, myocardial microcirculation perfusion status and myocardial fibrosis. It has important clinical significance for accurate diagnosis, risk classification and prognosis assessment of DbCM. cardiac magnetic resonance (CMR) has the advantages of good soft tissue resolution and multi-sequence and multi-parameter imaging, which can not only accurately assess cardiac anatomy and function, but also non-invasively observe the histological characteristics of the myocardium, and have important value for early diagnosis and grading of myocardial fibrosis. This article reviews the advances in the clinical application of MR late gadolinium enhancement, T1 mapping, T2 mapping, diffusion tensor imaging and T1ρ mapping in myocardial fibrosis, and looks forward to the development and application of these technologies in the future.
[Keywords] diabetic cardiomyopathy;diabetes mellitus;myocardiosis;myocardial fibrosis;late gadolinium enhancement;diffusion tensor imaging;T1 mapping;T2 mapping;T1ρ mapping;cardiac magnetic resonance;magnetic resonance imaging

LIANG Jiuping1, 2   ZENG Xiaolin3   XU Xi2   ZHU Yanjie2*  

1 Department of Radiology, Shenzhen Bao'an District Songgang People's Hospital, Shenzhen 518105, China

2 Shenzhen Institute of Advanced Technology Chinese academy of Sciences, Shenzhen 518071, China

3 Department of Cadiology, Shenzhen University General Hospital, Shenzhen 518071, China

Zhu YJ, E-mail:

Conflicts of interest   None.

Received  2022-04-08
Accepted  2022-10-06
DOI: 10.12015/issn.1674-8034.2022.11.029
Cite this article as: Liang JP, Zeng XL, Xu X, et al. Myocardial fibrosis CMR and its application progress in diabetic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(11): 145-148.DOI:10.12015/issn.1674-8034.2022.11.029

Ritchie RH, Abel ED. Basic Mechanisms of Diabetic Heart Disease[J]. Circ Res, 2020, 126(11): 1501-1525. DOI: 10.1161/CIRCRESAHA.120.315913.
Tan Y, Zhang Z, Zheng C, et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence[J]. Nat Rev Cardiol, 2020, 17(9): 585-607. DOI: 10.1038/s41569-020-0339-2.
Tadic M, Cuspidi C, Calicchio F, et al. Diabetic cardiomyopathy: How can cardiac magnetic resonance help?[J]. Acta Diabetol, 2020, 57(9): 1027-1034. DOI: 10.1007/s00592-020-01528-2.
Xie FJ, Jiang SC, Gao SY, et al. Fasudil ameliorates myocardial fibrosis by regulating polarization of macrophages in diabetic mice[J]. Chinese Journal of Pathophysiology, 2019, 35(5): 881-888. DOI: 10.3969/j.issn.1000-4718.2019.05.017.
Dillmann WH. Diabetic Cardiomyopathy[J]. Circ Res, 2019, 124(8): 1160-1162. DOI: 10.1161/CIRCRESAHA.118.314665.
Khan MA, Yang EY, Nguyen DT, et al. Examining the Relationship and Prognostic Implication of Diabetic Status and Extracellular Matrix Expansion by Cardiac Magnetic Resonance[J/OL]. Circ Cardiovasc Imaging, 2020, 13(7) [2022-04-07]. DOI: 10.1161/CIRCIMAGING.120.011000.
Xiong H, Fu Q, Zhao J, et al. The evaluation of diffuse myocardial fibrosis of dilated cardiomyopathy with T1mapping methods using 1.5T MRI[J]. Journal of Clinical Cardiology, 2020, 36(7): 652-657. DOI: 10.13201/j.issn.1001-1439.2020.07.016.
Karamitsos TD, Arvanitaki A, Karvounis H, et al. Myocardial Tissue Characterization and Fibrosis by Imaging[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1221-1234. DOI: 10.1016/j.jcmg.2019.06.030.
Song Y, Guo YK, Xu HY, et al. Progresses of quantitative magnetic resonance imaging for myocardial tissue evaluation[J]. Chin J Magn Reson Imaging, 2021, 12(11): 109-112, 121. DOI: 10.12015/issn.1674-8034.2021.11.027.
Bun SS, Kober F, Jacquier A, et al. Value of in vivo T2 measurement for myocardial fibrosis assessment in diabetic mice at 11.75 T[J]. Invest Radiol, 2012, 47(5): 319-323. DOI: 10.1097/RLI.0b013e318243e062.
Nielles-Vallespin S, Khalique Z, Ferreira PF, et al. Assessment of Myocardial Microstructural Dynamics by In Vivo Diffusion Tensor Cardiac Magnetic Resonance[J]. J Am Coll Cardiol, 2017, 69(6): 661-676. DOI: 10.1016/j.jacc.2016.11.051.
Thompson EW, Kamesh Iyer S, Solomon MP, et al. Endogenous T1ρ cardiovascular magnetic resonance in hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1) [2022-04-07]. DOI: 10.1186/s12968-021-00813-5.
Liu Z, Guo DD, Li CP, et al. Evaluation of myocardial fibrosis in miniature pig model of COPD by the 3.0 T magnetic resonance LGE techniques: An experimental study[J]. Chin J Magn Reson Imaging, 2021, 12(8): 49-54. DOI: 10.12015/issn.1674-8034.2021.08.010.
Zhang Y, Zeng W, Chen W, et al. MR extracellular volume mapping and non-contrast T1ρ mapping allow early detection of myocardial fibrosis in diabetic monkeys[J]. Eur Radiol, 2019, 29(6): 3006-3016. DOI: 10.1007/s00330-018-5950-9.
Bamberg F, Hetterich H, Rospleszcz S, et al. Subclinical Disease Burden as Assessed by Whole-Body MRI in Subjects With Prediabetes, Subjects With Diabetes, and Normal Control Subjects From the General Population: The KORA-MRI Study[J]. Diabetes, 2017, 66(1): 158-169. DOI: 10.2337/db16-0630.
Storz C, Hetterich H, Lorbeer R, et al. Myocardial tissue characterization by contrast-enhanced cardiac magnetic resonance imaging in subjects with prediabetes, diabetes, and normal controls with preserved ejection fraction from the general population[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(6): 701-708. DOI: 10.1093/ehjci/jex190.
Shang Y, Zhang X, Leng W, et al. Assessment of Diabetic Cardiomyopathy by Cardiovascular Magnetic Resonance T1 Mapping: Correlation with Left-Ventricular Diastolic Dysfunction and Diabetic Duration[J/OL]. J Diabetes Res, 2017, 2017 [2022-04-07]. DOI: 10.1155/2017/9584278.
Gao Y, Yang ZG, Ren Y, et al. Evaluation of myocardial fibrosis in diabetes with cardiac magnetic resonance T1-mapping: Correlation with the high-level hemoglobin A1c[J]. Diabetes Res Clin Pract, 2019, 150: 72-80. DOI: 10.1016/j.diabres.2019.03.004.
Lin Q, Wang JJ, Ge YH, et al. Application of magnetic resonance T1-mapping and extracellular volume in hypertrophic cardiomyopathy[J]. Radiol Practice, 2021, 36(9): 1095-1100. DOI: 10.13609/j.cnki.1000-0313.2021.09.004.
Ando K, Nagao M, Watanabe E, et al. Association between myocardial hypoxia and fibrosis in hypertrophic cardiomyopathy: analysis by T2* BOLD and T1 mapping MRI[J]. Eur Radiol, 2020, 30(8): 4327-4336. DOI: 10.1007/s00330-020-06779-9.
Zhang HK, Shi CY, Zhang N, et al. The research of detecting early myocardial fibrosis by cardiac magnetic resonance T1mapping in type 2 diabetic cardiomyopathy mouse model[J]. Journal of Cardiovasular & Pulmonary Diseases, 2020, 39(7): 860-867. DOI: 10.3969/j.issn.1007-5062.2020.07.026.
Cao Y, Zeng W, Cui Y, et al. Increased myocardial extracellular volume assessed by cardiovascular magnetic resonance T1 mapping and its determinants in type 2 diabetes mellitus patients with normal myocardial systolic strain[J/OL]. Cardiovasc Diabetol, 2018, 17(1) [2022-04-07]. DOI: 10.1186/s12933-017-0651-2.
Xiang CH, Tang SD, Xiang B, et al. A Meta-analysis of correlation among native T1,extracellular volume fraction and diffuse myocardial fibrosis[J]. Journal of Clinical Cardiology, 2020, 36(12): 1093-1098. DOI: 10.13201/j.issn.1001-1439.2020.12.006.
Huber AT, Bravetti M, Lamy J, et al. Non-invasive differentiation of idiopathic inflammatory myopathy with cardiac involvement from acute viral myocarditis using cardiovascular magnetic resonance imaging T1 and T2 mapping[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1) [2022-04-07]. DOI: 10.1186/s12968-018-0430-6.
Chen Y, Luo L, He JL, et al. Myocardial Segmentation of MRI T1 Mapping and T2 Mapping in Diagnosis of Acute Myocarditis[J]. Chin J Med Imaging, 2019, 27(8): 599-604, 606. DOI: 10.3969/j.issn.1005-5185.2019.08.009.
Amano Y, Omori Y, Ando C, et al. Clinical Importance of Myocardial T2 Mapping and Texture Analysis[J]. Magn Reson Med Sci, 2021, 20(2): 139-151. DOI: 10.2463/mrms.rev.2020-0007.
Feng GY, Zhang L, Wang JG, et al. A preliminary study on quantitative measurement of left ventricular myocardial T2 value to evaluate cardiac function in patients with type 2 diabetes mellitus[J]. Radiol Practice, 2021, 36(3): 300-306. DOI: 10.13609/j.cnki.1000-0313.2021.03.004.
Chowdhary A, Garg P, Das A, et al. Cardiovascular magnetic resonance imaging: emerging techniques and applications[J]. Heart, 2021, 107(9): 697-704. DOI: 10.1136/heartjnl-2019-315669.
Das A, Kelly C, Teh I, et al. Acute Microstructural Changes after ST-Segment Elevation Myocardial Infarction Assessed with Diffusion Tensor Imaging[J]. Radiology, 2021, 299(1): 86-96. DOI: 10.1148/radiol.2021203208.
Khalique Z, Ferreira PF, Scott AD, et al. Diffusion Tensor Cardiovascular Magnetic Resonance in Cardiac Amyloidosis[J/OL]. Circ Cardiovasc Imaging, 2020, 13(5) [2022-04-07]. DOI: 10.1161/CIRCIMAGING.119.009901.
Liu WH, Luo GH, Zhao H. The value of combining MR diffusion tensor imaging, periostin, and lysophosphatidyl acid in predicting structural remodeling after myocardial infarction[J]. International Journal of Medical Radiology, 2021, 44(3): 277-282, 335. DOI: 10.19300/j.2021.L18121.
Abdullah OM, Drakos SG, Diakos NA, et al. Characterization of diffuse fibrosis in the failing human heart via diffusion tensor imaging and quantitative histological validation[J]. NMR Biomed, 2014, 27(11): 1378-1386. DOI: 10.1002/nbm.3200.
Ariga R, Tunnicliffe EM, Manohar SG, et al. Identification of Myocardial Disarray in Patients With Hypertrophic Cardiomyopathy and Ventricular Arrhythmias[J]. J Am Coll Cardiol, 2019, 73(20): 2493-2502. DOI: 10.1016/j.jacc.2019.02.065.
Das A, Chowdhary A, Kelly C, et al. Insight Into Myocardial Microstructure of Athletes and Hypertrophic Cardiomyopathy Patients Using Diffusion Tensor Imaging[J]. J Magn Reson Imaging, 2021, 53(1): 73-82. DOI: 10.1002/jmri.27257.
Mekkaoui C, Reese TG, Jackowski MP, et al. Diffusion MRI in the heart[J/OL]. NMR Biomed, 2017, 30(3) [2022-04-07]. DOI: 10.1002/nbm.3426.
Nguyen C, Fan Z, Xie Y, et al. In vivo diffusion-tensor MRI of the human heart on a 3 tesla clinical scanner: An optimized second order (M2) motion compensated diffusion-preparation approach[J]. Magn Reson Med, 2016, 76(5): 1354-1363. DOI: 10.1002/mrm.26380.
Magat J, Ozenne V, Cedilnik N, et al. 3D MRI of explanted sheep hearts with submillimeter isotropic spatial resolution: comparison between diffusion tensor and structure tensor imaging[J]. MAGMA, 2021, 34(5): 741-755. DOI: 10.1007/s10334-021-00913-4.
Mekkaoui C, Jackowski MP, Kostis WJ, et al. Myocardial Scar Delineation Using Diffusion Tensor Magnetic Resonance Tractography[J/OL]. J Am Heart Assoc, 2018, 7(3) [2022-04-07]. DOI: 10.1161/JAHA.117.007834.
Serai SD. Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging[J]. Pediatr Radiol, 2022, 52(2): 217-227. DOI: 10.1007/s00247-021-05042-7.
Gao LX, Yuan HS. T1ρ technique in quantitatively evaluation on ankle osteochondral lesions of talus[J]. Chin J Med Imaging Techno, 2020, 36(3): 444-447. DOI: 10.13929/j.issn.1003-3289.2020.03.034.
Zhang H, Zou LQ, Zhang K, et al. Experimental study on early diagnosis of liver fibrosis using multi-parametric MRI[J]. Chin J Radiol, 2019, 53(10): 900-904. DOI: 10.3760/cma.j.issn.1005-1201.2019.10.021.
van Oorschot JW, El Aidi H, Jansen of Lorkeers SJ, et al. Endogenous assessment of chronic myocardial infarction with T(1ρ)-mapping in patients[J/OL]. J Cardiovasc Magn Reson, 2014, 16(1) [2022-04-07]. DOI: 10.1186/s12968-014-0104-y.
Yin Q, Abendschein D, Muccigrosso D, et al. A non-contrast CMR index for assessing myocardial fibrosis[J]. Magn Reson Imaging, 2017, 42: 69-73. DOI: 10.1016/j.mri.2017.04.012.
Wang C, Zheng J, Sun J, et al. Endogenous contrast T1rho cardiac magnetic resonance for myocardial fibrosis in hypertrophic cardiomyopathy patients[J]. J Cardiol, 2015, 66(6): 520-526. DOI: 10.1016/j.jjcc.2015.03.005.
van Oorschot JW, Güçlü F, de Jong S, et al. Endogenous assessment of diffuse myocardial fibrosis in patients with T1ρ-mapping[J]. J Magn Reson Imaging, 2017, 45(1): 132-138. DOI: 10.1002/jmri.25340.
Gram M, Gensler D, Winter P, et al. Fast myocardial T1ρmapping in mice using k-space weighted image contrast and a Bloch simulation-optimized radial sampling pattern[J]. MAGMA, 2022, 35: 325-340. DOI: 10.1007/s10334-021-00951-y.
Kamesh Iyer S, Moon B, Hwuang E, et al. Accelerated free-breathing 3D T1ρ cardiovascular magnetic resonance using multicoil compressed sensing[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1) [2022-04-07]. DOI: 10.1186/s12968-018-0507-2.
Bustin A, Toupin S, Sridi S, et al. Endogenous assessment of myocardial injury with single-shot model-based non-rigid motion-corrected T1 rho mapping[J]. J Cardiovasc Magn Reson, 2021, 23(1): 119. DOI: 10.1186/s12968-021-00781-w.
Velasco C, Cruz G, Lavin B, et al. Simultaneous T1, T2, and T1ρ cardiac magnetic resonance fingerprinting for contrast agent-free myocardial tissue characterization[J]. Magn Reson Med, 2022, 87(4): 1992-2002. DOI: 10.1002/mrm.29091.
Qi H, Bustin A, Kuestner T, et al. Respiratory motion-compensated high-resolution 3D whole-heart T1ρ mapping[J/OL]. J Cardiovasc Magn Reson, 2020, 22 [2022-04-07]. DOI: 10.1186/s12968-020-0597-5.

PREV Progress of imaging studies of the patients with cardiac involvement in polymyositis/dermatomyositis
NEXT Research progress of imaging and artificial intelligence technology in quantitative assessment of sarcopenia in liver cirrhosis

Tel & Fax: +8610-67113815    E-mail: