Share:
Share this content in WeChat
X
Review
Research progress of deep learning in stroke diagnosis and prevention
ZHANG Siqi  YANG Tiansong  MA Shuai  ZHANG Miao 

Cite this article as: Zhang SQ, Yang TS, Ma S, et al. Research progress of deep learning in stroke diagnosis and prevention[J]. Chin J Magn Reson Imaging, 2022, 13(11): 125-128. DOI:10.12015/issn.1674-8034.2022.11.024.


[Abstract] In recent years, with the rapid development of artificial intelligence technology, computer science with deep learning as the core content has been widely used in the medical field. Stroke is a common cause of human death, and deep learning has great application value in stroke diagnosis and prevention. In order to evaluate the importance of deep learning technology in stroke disease, this paper conducts a systematic review of deep learning in stroke diagnosis, treatment and prediction, and also discusses the current bottlenecks and the future development prospects of deep learning technology, hoping to provide new directions for further research by clinical and medical researchers.
[Keywords] cerebral stroke;deep learning;artificial intelligence;imaging;diagnosis and treatment;magnetic resonance imaging

ZHANG Siqi1   YANG Tiansong2   MA Shuai1   ZHANG Miao3*  

1 Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China

2 Academic Affairs Section, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China

3 Acupuncture and Moxibustion Consulting Room No. 8, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China

Zhang M, E-mail: 13845088833@139.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82174509).
Received  2022-04-06
Accepted  2022-09-29
DOI: 10.12015/issn.1674-8034.2022.11.024
Cite this article as: Zhang SQ, Yang TS, Ma S, et al. Research progress of deep learning in stroke diagnosis and prevention[J]. Chin J Magn Reson Imaging, 2022, 13(11): 125-128. DOI:10.12015/issn.1674-8034.2022.11.024.

[1]
Xu G, Ma M, Liu X, et al. Is there a stroke belt in China and why?[J]. Stroke, 2013, 44(7): 1775-1783. DOI: 10.1161/STOKEAHA.113.001238.
[2]
Mendis S, Davis S, Norrving B. Organizational update: the world health organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease[J/OL]. Stroke, 2015 [2022-04-14]. https://www.ahajournals.org/doi/10.1161/STR.OKEAHA.115.008097. DOI: 10.1161/STROKEAHA.115.008097.
[3]
Yang H. Study on the segmentation method of chronic stroke lesions[D]. Shenzhen: University of Chinese Academy of Sciences (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), 2020. DOI: 10.27822/d.cnki.gszxj.2020.000151.
[4]
Feigin VL, Forouzanfar MH, Krishnamurthi R, et al. Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010) and the GBD Stroke Experts Group. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010[J]. Lancet, 2014, 83(9913): 245-254. DOI: 10.1016/s0140-6736(13)61953-4.
[5]
Porcu M, Anzidei M, Suri JS, et al. Carotid artery imaging: The study of intra-plaque vascularization and hemorrhage in the era of the "vulnerable" plaque[J]. J Neuroradiol, 2020, 47(6): 464-472. DOI: 10.1016/j.neurad.2019.03.009.
[6]
Abedi V, Goyal N, Tsivgoulis G, et al. Novel Screening Tool for Stroke Using Artificial Neural Network[J]. Stroke, 2017, 48(6): 1678-1681. DOI: 10.1161/STROKEAHA.117.017033.
[7]
Qin HQ, Zhang YQ, Zhang J, et al. Application of artificial intelligence in the diagnosis and treatment of ischemic stroke[J]. China Journal of Modern Neurology, 2021, 21(1): 21-24. DOI: 10.3969/j.issn.1672-6731.2021.01.005.
[8]
Takahashi N, Lee Y, Tsai DY, et al. An automated detection method for the MCA dot sign of acute stroke in unenhanced CT[J]. Radiol Phys Technol, 2014, 7(1): 79-88. DOI: 10.1007/s12194-013-0234-1.
[9]
Lei Bo. Research and Application of Classification Algorithms in Data Mining[J]. Computer Knowledge and Technology, 2019, 15(27): 232-233. DOI: 10.14004/j.cnki.ckt.2019.3252.
[10]
Lu GM, Zhang ZQ. Artificial Intelligence Medical Imaging[J]. Journal of Postgraduate Medicine, 2018, 31(7): 683-687. DOI: 10.16571/j.cnki.1008-8199.2018.07.003.
[11]
Wang YJ, Jing J. Current status and prospect of artificial intelligence in neuromedicine[J]. Chinese Journal of Internal Medicine, 2018, 57(10): 3. DOI: 10.3760/cma.j.issn.0578-1426.2018.10.001.
[12]
Malathi D, Logesh R, Subramaniyaswamy V, et al. Hybrid Reasoning-based Privacy-Aware Disease Prediction Support System[J]. Computers & Electrical Engineering, 2019, 73: 114-127. DOI: 10.1016/j.compeleceng.2018.11.009.
[13]
Nashif S, Raihan MR, Islam MR, et al. Heart Disease Detection by Using Machine Learning Algorithms and a Real-Time Cardiovascular Health Monitoring System[J/OL]. World Journal of Engineering and Technology, 2018, 6(4) [2022-04-14]. https://www.scirp.org/journal/papercitationdetails.aspx?paperid=88650&JournalID=2451. DOI: 10.4236/wjet.2018.64057.
[14]
Xu XL, Duan J, Xiao CB, et al. Packet intrusion detection method based on CNN and SVM[J]. Computer System Application, 2020, 29(6): 39-46. DOI: 10.15888/j.cnki.csa.007464.
[15]
Lee JG, Jun S, Cho YW, et al. Deep Learning in Medical Imaging: General Overview[J]. Korean J Radiol, 2017, 18(4): 570-584. DOI: 10.3348/kjr.2017.18.4.570.
[16]
Mair G, Wardlaw JM. Imaging of acute stroke prior to treatment: current practice and evolving techniques[J/OL]. Br J Radiol, 2014, 87(1040) [2022-04-14]. https://www.birpublications.org/doi/10.1259/bjr.20140216. DOI: 10.1259/bjr.20140216.
[17]
Kim J, Chhour P, Hsu J, et al. Use of Nanoparticle Contrast Agents for Cell Tracking with Computed Tomography[J]. Bioconjug Chem, 2017, 28(6): 1581-1597. DOI: 10.1021/acs.bioconjchem.7b00194.
[18]
Vilela P, Rowley HA. Brain ischemia: CT and MRI techniques in acute ischemic stroke[J]. Eur J Radiol, 2017, 96: 162-172. DOI: 10.1016/j.ejrad.2017.08.014.
[19]
Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks[J]. Neuroimage Clin, 2017, 15: 633-643. DOI: 10.1016/j.nicl.2017.06.016.
[20]
Zhang L, Song R, Wang Y, et al. Ischemic Stroke Lesion Segmentation Using MULTI-PLANE Information Fusion[J]. IEEE Access, 2020, 8: 45715-45725. DOI: 10.1109/ACCESS.2020.2977415.
[21]
Wu O, Winzeck S, Giese AK, et al. Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data[J]. Stroke, 2019, 50(7): 1734-1741. DOI: 10.1161/STROKEAHA.119.025373.
[22]
Tomita N, Jiang S, Maeder ME, et al. Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network[J/OL]. Neuroimage Clin, 2020, 27 [2022-04-14]. https://linkinghub.elsevier.com/retrieve/pii/S2213158220301133. DOI: 10.1016/j.nicl.2020.102276.
[23]
Liu L, Kurgan L, Wu FX, et al. Attention convolutional neural network for accurate segmentation and quantification of lesions in ischemic stroke disease[J/OL]. Med Image Anal, 2020, 65 [2022-04-14]. https://linkinghub.elsevier.com/retrieve/pii/S1361841520301559. DOI: 10.1016/j.media.2020.101791.
[24]
Liu LL, Chen SW, Zhang FH, et al. Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI[J]. Neural Comput & Applic, 2020, 32: 6545-6558. DOI: https://doi.org/10.1007/s00521-019-04096-x.
[25]
Gao C. Research on the segmentation of ischemic stroke lesions based on deep learning[D]. Nanchang: Nanchang University, 2019. DOI: 10.27232/d.cnki.gnchu.2019.001956.
[26]
Haeck T, Maes F, Suetens P. ISLES Challenge 2015: Automated Model-Based Segmentation of Ischemic Stroke in MR Images[J]. Iieee Ttransactions on Wwireless Ccommunications, 2013, 12(4): 1512-1523. DOI: 10.1007/978-3-319-30858-6_21.
[27]
Chen TC, You PS, Wu CH, et al. Using FCM Based Hybrid Computational Approach for Diseases Diagnosis in Traditional Chinese Medicine[J]. International Journal of Machine Learning and Computing, 2014, 4(4): 389-393. DOI: 10.7763/IJMLC.2014.V4.442.
[28]
Havaei M, Dutil F, Pal C, et al. A Convolutional Neural Network Approach to Brain Tumor Segmentation[J/OL]. Springer International Publishing, 2015 [2022-04-14]. https://link.springer.com/chapter/10.1007/978-3-319-30858-6_17#citeas. DOI: 10.1007/978-3-319-30858-6_17.
[29]
Liu L. Automatic assessment of upper limb motor function in stroke based on deep learning[D]. Xi'an: University of Electronic Science and Technology of China, 2020. DOI: 10.27005/d.cnki.gdzku.2020.001509.
[30]
Zhang W. Research on CT Image Segmentation Algorithm Based on Curve Evolution[D]. Chongqing: Chongqing University, 2019. DOI: 10.27670/d.cnki.gcqdu.2019.000599.
[31]
Murray NM, Unberath M, Hager GD, et al. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review[J]. Journal of Neurointerventional Surgery, 2019, 12(2): 156-164. DOI: 10.1136/neurintsurg-2019-015135.
[32]
Guerrero R, Qin C, Oktay O, et al. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks[J]. NeuroImage: Clinical, 2017, 17: 918-934. DOI: 10.1016/j.nicl.2017.12.022.
[33]
Wang K, Shou Q, Ma SJ, et al. Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke[J]. Stroke, 2020, 51: 489-497. DOI: 10.1161/STROKEAHA.119.027457.
[34]
Heo JN, Yoon JG, Park H, et al. Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke[J]. Stroke, 2019, 50: 1263-1265. DOI: 10.1161/STROKEAHA.118.024293.
[35]
Ho KC, Speier W, Zhang H, et al. A Machine Learning Approach for Classifying Ischemic Stroke Onset Time from Imaging[J]. IEEE Transactions on Medical Imaging, 2019, 38(7): 1666-1676. DOI: 10.1109/TMI.2019.2901445.
[36]
Garg R, Oh E, Naidech A, et al. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing[J]. Journal of Stroke and Cerebrovascular Diseases, 2019, 28(7): 2045-2051. DOI: 10.1016/j.jstrokecerebrovasdis.2019.02.004.
[37]
Neurology Branch of Chinese Medical Association, Neurological Rehabilitation Group of Neurological Branch of Chinese Medical Association, Cerebrovascular Disease Group of Neurological Branch of Chinese Medical Association. Guidelines for early rehabilitation of stroke in China[J]. Chinese Journal of Neurology, 2017, 50(6): 405-412. DOI: 10.3760/cma.j.issn.1006-7876.2017.06.002.
[38]
Wang W, Jiang B, Sun H, et al. Prevalence, Incidence, and Mortality of Stroke in China Clinical Perspective: Results from a Nationwide Population-Based Survey of 480687 Adults[J/OL]. Circulation, 2017, 135(8) [2022-04-14]. https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.116.025250. DOI: 10.1161/CIRCULATIONAHA.116.025250.
[39]
Yan H. Research on Action and Behavior Recognition Methods in Rehabilitation Training Scenarios[D]. Zhengzhou: Zhengzhou University, 2020. DOI: 10.27466/d.cnki.gzzdu.2020.000597.
[40]
Xie P, Liu H, Wang LL, et al. Design of virtual rehabilitation training system based on EMG feedback[J]. Journal of Instrumentation, 2018, 39(1): 250-257. DOI: 10.19650/j.cnki.cjsi.j1702535.
[41]
Ba Cc Hi S, Zerner T, Oakden-Rayner L, et al. Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes[J/OL]. Academic Radiology, 2019, 27(2) [2022-04-14]. https://www.academicradiology.org/article/S1076-6332(19)30174-6/fulltext. DOI: 10.1016/j.acra.2019.03.015.
[42]
Ma XY. Application of multimodal magnetic resonance imaging and artificial intelligence in stroke patients[D]. Zhengzhou: Zhengzhou University, 2020. DOI: 10.27466/d.cnki.gzzdu.2020.000087.
[43]
Yang HB. Prediction of stroke risk level based on deep learning[D]. Chongqing: Southwest University, 2019. DOI: 10.27684/d.cnki.gxndx.2019.000127.
[44]
Yao CX. Research on cerebrovascular disease prediction system based on long-term memory neural network[D]. Beijing: Beijing Jiaotong University, 2019. DOI: 10.26944/d.cnki.gbfju.2019.000978.
[45]
Chen OY, Liu YJ, Ye WJ, et al. Method of Cerebral Stroke Prediction Based on Deep Learning and MFCC Features[J]. Information and Computer (Theory Edition), 2019(3): 141-143.
[46]
Krizhevsky A, Sutskever I, Hinton G. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 87-90. DOI: 10.1145/3065386.
[47]
Zhang Y, Lobo-Mueller EM, Karanicolas P, et al. CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging[J/OL]. BMC Med Imaging, 2020, 20(1) [2022-04-14]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-020-0418-1. DOI: 10.1186/s12880-020-0418-1.
[48]
Chiang CH, Weng CL, Chiu HW. Automatic classification of medical image modality and anatomical location using convolutional neural network[J/OL]. PLoS One, 2021, 16(6) [2022-06-11]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253205. DOI: 10.1371/journal.pone.0253205.
[49]
TOPOL EJ, Xiong YY, Li ZX, et al. Welcome to the new guidelines for clinical research on artificial intelligence[J]. Chinese Journal of Stroke, 2020, 15(11): 1223-1227. DOI: 10.3969/j.issn.1673-5765.2020.11.012.

PREV New progress in the application of diffusion tensor imaging in autism spectrum disorders
NEXT Research progress in radiomics on prognosis prediction of lower-grade gliomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn