Share this content in WeChat
New progress in the application of diffusion tensor imaging in autism spectrum disorders
LI Yuxin  DANG Weili  ZHOU Rongyi  KONG Yamin  MA Bingxiang 

Cite this article as: Li YX, Dang WL, Zhou RY, et al. New progress in the application of diffusion tensor imaging in autism spectrum disorders[J]. Chin J Magn Reson Imaging, 2022, 13(11): 119-124. DOI:10.12015/issn.1674-8034.2022.11.023.

[Abstract] Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that starts in early childhood, with a high disability rate. Therefore, timely diagnosis and early treatment are essential. The heterogeneity of ASD diagnostic methods and the inherent subjectivity of the scale evaluation are obstacles to the early recognition of ASD. Diffusion tensor imaging (DTI) can quantitatively present the changes of white matter microstructure and brain development through relevant parameters, which is of great value in early recognition and diagnosis of ASD. Therefore, based on the DTI technology and its clinical application in ASD diagnosis and treatment, this paper summarized and proposed that the future research direction of DTI technology is to explore the white matter fiber bundle connection mechanism of ASD, summarize the common development paths of different neurodevelopmental disorders, and analyze the longitudinal correlation between brain development and behavior of all age groups of children with ASD, in order to clarify the potential neuropathological mechanism and provide important reference for the future use of visualization technology to seek ASD biomarkers.
[Keywords] autism spectrum disorder;white matter fiber bundle;fractional anisotropy;biomarkers;magnetic resonance imaging;diffusion tensor imaging

LI Yuxin1, 3   DANG Weili2, 3   ZHOU Rongyi2, 3   KONG Yamin2, 3   MA Bingxiang2, 3*  

1 Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China

2 Children's Brain Disease Diagnosis, Treatment and Rehabilitation Center of the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China

3 School of Pediatric Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China

Ma BX, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81973904); Special Research Project of Traditional Chinese Medicine of Henan Province (No. 20-21ZY2111); Characteristic Backbone Discipline of Henan Province (No. STG-ZYX03-202129).
Received  2022-04-09
Accepted  2022-11-07
DOI: 10.12015/issn.1674-8034.2022.11.023
Cite this article as: Li YX, Dang WL, Zhou RY, et al. New progress in the application of diffusion tensor imaging in autism spectrum disorders[J]. Chin J Magn Reson Imaging, 2022, 13(11): 119-124. DOI:10.12015/issn.1674-8034.2022.11.023.

Maenner MJ, Shaw KA, Bakian AV, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018[J]. MMWR Surveill Summ, 2021, 70(11): 1-16. DOI: 10.15585/mmwr.ss7011a1.
Hrdlicka M, Sanda J, Urbanek T, et al. Diffusion Tensor Imaging And Tractography In Autistic, Dysphasic, And Healthy Control Children[J]. Neuropsychiatr Dis Treat, 2019, 15: 2843-2852. DOI: 10.2147/NDT.S219545.
Sun X, Allison C, Wei L, et al. Autism prevalence in China is comparable to Western prevalence[J/OL]. Mol Autism, 2019, 10: 7 [2022-04-07]. DOI: 10.1186/s13229-018-0246-0.
Kong LL, Wang SJ. Research on the quality of life of parents of autistic children in Huai'an City and its influencing factors[J]. Practical Preventive Medicine, 2019, 26 (12): 1483-1486. DOI: 10.3969/j.issn.1006-3110.2019.12.021.
Lord C, Bishop SL. The autism spectrum: definitions, assessment and diagnoses[J]. Br J Hosp Med (Lond), 2009, 70(3): 132-135. DOI: 10.12968/hmed.2009.70.3.40552.
Lope-Piedrafita S. Diffusion Tensor Imaging (DTI)[J]. Methods Mol Biol, 2018, 1718: 103-116. DOI: 10.1007/978-1-4939-7531-0_7.
Solders SK, Carper RA, Müller RA. White matter compromise in autism? Differentiating motion confounds from true differences in diffusion tensor imaging[J]. Autism Res, 2017, 10(10): 1606-1620. DOI: 10.1002/aur.1807.
Zhang LL, Zhu ZM, Tang QF, et al. Study on the volume of amygdala in children with autism spectrum disorder[J]. Maternal and Child Health Care of China, 2015, 30(21): 3620-3622. DOI: 10.7620/zgfybj.j.issn.1001-4411.2015.21.34.
Liu Y, Zhang T. Brain Connection in Children with Autism Spectrum Disorder: A Diffusion Tensor Imaging Study[J]. Chin J Rehabil Theory Pract, 2018, 24(11): 1296-1301. DOI: 10.3969/j.issn.1006-9771.2018.00.007.
Solso S, Xu R, Proudfoot J, et al. Diffusion Tensor Imaging Provides Evidence of Possible Axonal Overconnectivity in Frontal Lobes in Autism Spectrum Disorder Toddlers[J]. Biol Psychiatry, 2016, 79(8): 676-684. DOI: 10.1016/j.biopsych.2015.06.029.
Yao JF, Chen HY, Zhang YM. Study on the pathogenesis of subcortical aphasia by diffusion tensor imaging[J]. Chin J Rehabil Theory Pract, 2018, 24(8): 869-879. DOI: 10.3969/j.issn.1006-9771.2018.08.001.
Cheng L, Zhan L, Huang L, et al. The atypical functional connectivity of Broca's area at multiple frequency bands in autism spectrum disorder[J/OL]. Brain Imaging Behav, 2022 [2022-10-14]. DOI: 10.1007/s11682-022-00718-6.
Zhang Y, Qin B, Wang L, et al. Sex differences of language abilities of preschool children with autism spectrum disorder and their anatomical correlation with Broca and Wernicke areas[J/OL]. Front Pediatr, 2022, 10: 762621 [2022-10-12]. DOI: 10.3389/fped.2022.762621.
Bieneck V, Bletsch A, Mann C, et al. Longitudinal Changes in Cortical Thickness in Adolescents with Autism Spectrum Disorder and Their Association with Restricted and Repetitive Behaviors[J/OL]. Genes (Basel), 2021, 12(12) [2022-10-10]. DOI: 10.3390/genes12122024.
De Winter FL, Van den Stock J, de Gelder B, et al. Amygdala atrophy affects emotion-related activity in face-responsive regions in frontotemporal degeneration[J]. Cortex, 2016, 82: 179-191. DOI: 10.1016/j.cortex.2016.06.001.
Gibbard CR, Ren J, Skuse DH, et al. Structural connectivity of the amygdala in young adults with autism spectrum disorder[J]. Hum Brain Mapp, 2018, 39(3): 1270-1282. DOI: 10.1002/hbm.23915.
Galvez-Contreras AY, Zarate-Lopez D, Torres-Chavez AL, et al. Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder[J/OL]. Brain Sci, 2020, 10(12) [2022-04-08]. DOI: 10.3390/brainsci10120951.
Zhou YY, Fu QH. Research progress on the pathogenesis of oligodendroglia associated autism spectrum disorder[J]. Chin J Prevent Med, 2022(9): 1232-1237. DOI: 10.3760/cma.j.cn112150-20220529-00541.
Yao TT, Chen ZM, Zhang SC. Imaging features of abnormal neural connections in autistic children[J]. Chin J Rehabil Theory Pract, 2020, 26(4): 472-478. DOI: 10.3969/j.issn.1006-9771.2020.04.016.
Yao TT. Study on the neural mechanism of DTI and MRS in autistic children[D]. Guangzhou: Jinan University, 2012.
Zhang L, Ma R, Yuan Y, et al. The value of diffusion tensor imaging for differentiating autism spectrum disorder with language delay from developmental language disorder among toddlers[J/OL]. Medicine (Baltimore), 2019, 98(14): e15058 [2022-04-08]. DOI: 10.1097/MD.0000000000015058.
Chang C, Qiu NN, Xiao T, et al. Structural change of the corpus callosum fibers in toddlers with autism spectrum disorder: two-year follow-up[J]. Chin J Pediatr, 2017, 55(12): 920-925. DOI: 10.3760/cma.j.issn.0578-1310.2017.12.011.
Temur HO, Yurtsever I, Yesil G, et al. Correlation Between DTI Findings and Volume of Corpus Callosum in Children with AUTISM[J]. Curr Med Imaging Rev, 2019, 15(9): 895-899. DOI: 10.2174/1573405614666181005114315.
Kawamura A, Abe Y, Seki F, et al. Chd8 mutation in oligodendrocytes alters microstructure and functional connectivity in the mouse brain[J/OL]. Mol Brain, 2020, 13(1): 160 [2022-04-08]. DOI: 10.1186/s13041-020-00699-x.
Lee JM, Kyeong S, Kim E, et al. Abnormalities of Inter-and Intra-Hemispheric Functional Connectivity in Autism Spectrum Disorders: A Study Using the Autism Brain Imaging Data Exchange Database[J/OL]. Front Neurosci, 2016, 10: 191 [2022-10-12]. DOI: 10.3389/fnins.2016.00191.
Yeh CH, Tseng RY, Ni HC, et al. White matter microstructural and morphometric alterations in autism: implications for intellectual capabilities[J/OL]. Mol Autism, 2022, 13(1): 21 [2022-10-29]. DOI: 10.1186/s13229-022-00499-1.
Skotarczak M, Dzierżanowski J, Kaszubowski M, et al. Diagnostic value of diffusion tensor imaging in patients with clinical signs of cervical spondylotic myelopathy[J]. Neurol Neurochir Pol, 2022, 56(4): 341-348. DOI: 10.5603/PJNNS.a2022.0031.
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging[J]. Biophys J, 1994, 66(1): 259-267. DOI: 10.1016/S0006-3495(94)80775-1.
Shi J, Chang L, Wang J, et al. Initial Application of Diffusional Kurtosis Imaging in Evaluating Brain Development of Healthy Preterm Infants[J/OL]. PLoS One, 2016, 11(4): e154146 [2022-04-08]. DOI: 10.1371/journal.pone.0154146.
Deoni SC, Mercure E, Blasi A, et al. Mapping infant brain myelination with magnetic resonance imaging[J]. J Neurosci, 2011, 31(2): 784-791. DOI: 10.1523/JNEUROSCI.2106-10.2011.
Ouyang M, Cheng H, Mishra V, et al. Atypical age-dependent effects of autism on white matter microstructure in children of 2-7 years[J]. Hum Brain Mapp, 2016, 37(2): 819-832. DOI: 10.1002/HBM.23073.
Li Y, Zhou Z, Chang C, et al. Anomalies in uncinate fasciculus development and social defects in preschoolers with autism spectrum disorder[J/OL]. BMC Psychiatry, 2019, 19(1): 399 [2022-11-02]. DOI: 10.1186/s12888-019-2391-1.
Chang C. A two-year follow-up study of white matter fibers in children with autism spectrum disorders[D]. Nanjing: Nanjing Medical University, 2017.
Lu J, Wang J, Fu K, et al. Diffusion tensor imaging study of white matter structure in boys with autism spectrum disorder[J]. Chin J Behav Med & Brain Sci, 2017, 26(9): 825-829. DOI: 10.3760/cma.j.issn.1674-6554.2017.09.011.
Ameis SH, Lerch JP, Taylor MJ, et al. A Diffusion Tensor Imaging Study in Children With ADHD, Autism Spectrum Disorder, OCD, and Matched Controls: Distinct and Non-Distinct White Matter Disruption and Dimensional Brain-Behavior Relationships[J]. Am J Psychiatry, 2016, 173(12): 1213-1222. DOI: 10.1176/appi.ajp.2016.15111435.
Zhang AY, Jin XM, Ma J. Study on brain structural abnormalities in preschool and school-age children with autism spectrum disorders[J]. Chin J Contemp Pediatr, 2019, 21 (8): 749-753. DOI: 10.7499/j.issn.1008-8830.2019.08.003.
Xiao JX, Guo XM, Xie S, et al. A preliminary study of normal children's white matter development using diffusion tensor imaging[J]. Chin J Radiol, 2005, 39(12): 1252-1255. DOI: 10.3760/j.issn:1005-1201.2005.12.004.
Guo LL, Wang DH, Zhang H, et al. A preliminary study of diffusion tensor imaging in the development of cerebral myelin sheath in neonates[J]. Chin J Magn Reson Imaging, 2019, 10(10): 748-751. DOI: 10.12015/issn.1674-8034.2019.10.006.
Jung M, Tu Y, Lang CA, et al. Decreased structural connectivity and resting-state brain activity in the lateral occipital cortex is associated with social communication deficits in boys with autism spectrum disorder[J]. Neuroimage, 2019, 190: 205-212. DOI: 10.1016/j.neuroimage.2017.09.031.
Mimura K, Oga T, Sasaki T, et al. Abnormal axon guidance signals and reduced interhemispheric connection via anterior commissure in neonates of marmoset ASD model[J]. Neuroimage, 2019, 195: 243-251. DOI: 10.1016/j.neuroimage.2019.04.006.
Li X, Zhang K, He X, et al. Structural, Functional, and Molecular Imaging of Autism Spectrum Disorder[J]. Neurosci Bull, 2021, 37(7): 1051-1071. DOI: 10.1007/s12264-021-00673-0.
Li YM, Liang YY, Zou XB. Analysis of clinical brain imaging data of 368 children with autism[J]. Chin J Child Heal Care, 2014, 22(9): 929-932. DOI: 10.11825/zgetbjzz2014-22-09-10.
Wang JF, Shi QL, Chen HY, et al Diffusion tensor imaging study on the relationship between small world attribute of brain structure network and cognitive dysfunction in patients with white matter lesions[J]. Chin J Rehabil Theory Pract, 2021, 27(7): 780-784. DOI: 10.3969/j.issn.1006.
Ma H, Zhao LQ, Yin WM. Research progress of white matter hypersignal cognitive impairment based on diffusion tensor imaging[J]. Chin J Neuromed, 2020, 19(10): 1071-1074. DOI: 10.3760/cma.j.cn115354-20200731-00617.
Li S, Wang Y, Qian L, et al. Alterations of White Matter Connectivity in Preschool Children with Autism Spectrum Disorder[J]. Radiology, 2018, 288(1): 209-217. DOI: 10.1148/radiol.2018170059.
ElNakieb Y, Ali MT, Elnakib A, et al. The Role of Diffusion Tensor MR Imaging (DTI) of the Brain in Diagnosing Autism Spectrum Disorder: Promising Results[J/OL]. Sensors(Basel), 2021, 21(24) [2022-10-30]. DOI: 10.3390/s21248171.
Ecker C, Bookheimer SY, Murphy DG. Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan[J]. Lancet Neurol, 2015, 14(11): 1121-1134. DOI: 10.1016/S1474-4422(15)00050-2.
Mitroulaki S, Serdari A, Tripsianis G, et al. First Alarm and Time of Diagnosis in Autism Spectrum Disorders[J]. Compr Child Adolesc Nurs, 2020: 1-17. DOI: 10.1080/24694193.2020.1834013.
Uddin LQ, Dajani DR, Voorhies W, et al. Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder[J/OL]. Transl Psychiatry, 2017, 7(8): e1218 [2022-10-30]. DOI: 10.1038/tp.2017.164.
Andica C, Kamagata K, Kirino E, et al. Neurite orientation dispersion and density imaging reveals white matter microstructural alterations in adults with autism[J/OL]. Mol Autism, 2021, 12(1): 48 [2022-10-30]. DOI: 10.1186/s13229-021-00456-4.
Hazlett HC, Gu H, Munsell BC, et al. Early brain development in infants at high risk for autism spectrum disorder[J]. Nature, 2017, 542(7641): 348-351. DOI: 10.1038/nature21369.
Xiao Z, Ke XY, Qiu T, et al. Brain diffusion tensor imaging study of 2-and 3-year-old children with autism spectrum disorders[J]. J Chin Mental Health, 2014, 28(12): 942-946. DOI: 10.3969/j.issn.1000-6729.2014.12.012.
Liu Y, Zhu ZJ, Cao MR, et al. An sMRI study of early brain overdevelopment in autistic children[J]. Chin J Magn Reson Imaging, 2020, 11(4): 264-269. DOI: 10.12015/issn.1674-8034.2020.04.005.
Libero LE, Burge WK, Deshpande HD, et al. White Matter Diffusion of Major Fiber Tracts Implicated in Autism Spectrum Disorder[J]. Brain Connect, 2016, 6(9): 691-699. DOI: 10.1089/brain.2016.0442.
Shukla DK, Keehn B, Lincoln AJ, et al. White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study[J]. J Am Acad Child Adolesc Psychiatry, 2010, 49(12): 1269-1278. DOI: 10.1016/j.jaac.2010.08.018.
Aoki Y, Yoncheva YN, Chen B, et al. Association of White Matter Structure With Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder[J]. JAMA Psychiatry, 2017, 74(11): 1120-1128. DOI: 10.1001/jamapsychiatry.2017.2573.
Kuno M, Hirano Y, Nakagawa A, et al. White Matter Features Associated With Autistic Traits in Obsessive-Compulsive Disorder[J/OL]. Front Psychiatry, 2018, 9: 216 [2022-10-31]. DOI: 10.3389/fpsyt.2018.00216.
Moss HG, Wolf LG, Coker-Bolt P, et al. Quantitative Diffusion and Spectroscopic Neuroimaging Combined with a Novel Early-Developmental Assessment Improves Models for 1-Year Developmental Outcomes[J]. AJNR Am J Neuroradiol, 2022, 43(1): 139-145. DOI: 10.3174/ajnr.A7370.
Hu S, Li H, Zhang YQ, et al. Research progress in neuroimaging of childhood autism[J]. Chin J Magn Reson Imaging, 2021, 12(11): 105-108. DOI: 10.12015/issn.1674-8034.2021.11.026.
Development Behavior Group of Pediatric Branch of Chinese Medical Association, Child Health Group of Pediatric Branch of Chinese Medical Association. Expert Consensus on Early Diagnosis of Autism Spectrum Disorder in Chinese Young Children[J]. Chin J Pediatr, 2022, 60(7): 640-646. DOI: 10.3760/cma.j.issn.0578-1310.2017.12.004.
Tunç B, Yankowitz LD, Parker D, et al. Deviation from normative brain development is associated with symptom severity in autism spectrum disorder[J/OL]. Mol Autism, 2019, 10: 46 [2022-10-12]. DOI: 10.1186/s13229-019-0301-5.
Zhang LL, Zhu ZM, Zhang F, et al. Study on MR diffusion tensor imaging in children with autism spectrum disorder[J]. Chin J Child Heal Care, 2014, 22(9): 902-905. DOI: 10.11852/zgetbjzz2014-22-09-03.
Yeh CH, Tseng RY, Ni HC, et al. White matter microstructural and morphometric alterations in autism: implications for intellectual capabilities[J/OL]. Mol Autism, 2022, 13(1): 21 [2022-11-01]. DOI: 10.1186/s13229-022-00499-1.
Barnett BR, Casey CP, Torres-Velazquez M, et al. Convergent brain microstructure across multiple genetic models of schizophrenia and autism spectrum disorder: A feasibility study[J]. Magn Reson Imaging, 2020, 70: 36-42. DOI: 10.1016/j.mri.2020.04.002.
Virues-Ortega J, McKay NS, McCormack JC, et al. A callosal biomarker of behavioral intervention outcomes for autism spectrum disorder? A case-control feasibility study with diffusion tensor imaging[J/OL]. PLoS One, 2022, 17(2): e262563 [2022-11-01]. DOI: 10.1371/journal.pone.0262563.
Cai K, Yu Q, Herold F, et al. Mini-Basketball Training Program Improves Social Communication and White Matter Integrity in Children with Autism[J/OL]. Brain Sci, 2020, 10(11) [2022-04-09]. DOI: 10.3390/brainsci10110803.
Saaybi S, AlArab N, Hannoun S, et al. Pre- and Post-therapy Assessment of Clinical Outcomes and White Matter Integrity in Autism Spectrum Disorder: Pilot Study[J/OL]. Front Neurol, 2019, 10: 877 [2022-04-08]. DOI: 10.3389/fneur.2019.00877.
Eigsti IM, Stevens MC, Schultz RT, et al. Language comprehension and brain function in individuals with an optimal outcome from autism[J]. Neuroimage Clin, 2016, 10: 182-191. DOI: 10.1016/j.nicl.2015.11.014.
Zhou Q, Zhang GH, Wu CZ, et al. Progress in the application of diffusion weighted magnetic resonance imaging in epilepsy[J]. Chin J Magn Reson Imaging, 2022, 13(8): 104-108. DOI: 10.12015/issn.1674-8034.2022.08.023.

PREV Research progress of neurite orientation dispersion and density imaging in neurodegenerative diseases
NEXT Research progress of deep learning in stroke diagnosis and prevention

Tel & Fax: +8610-67113815    E-mail: