Share this content in WeChat
Research progress of neurite orientation dispersion and density imaging in neurodegenerative diseases
LI Xiaoyang  WANG Xiaochun 

Cite this article as: Li XY, Wang XC. Research progress of neurite orientation dispersion and density imaging in neurodegenerative diseases[J]. Chin J Magn Reson Imaging, 2022, 13(11): 115-118. DOI:10.12015/issn.1674-8034.2022.11.022.

[Abstract] With the increasing incidence of neurodegenerative diseases, there is an urgent need for a biomarker that can detect the pathological changes of the disease before severe neuronal loss occurs to facilitate early intervention of the disease. Neurite orientation dispersion and density imaging (NODDI) is a novel multicompartment biophysical model of diffusion magnetic resonance imaging that can quantify neurite density and fiber dispersion and specifically reflects the changes of brain microstructure. At present, this technology has been used in the research of a variety of neurodegenerative diseases. This article reviews the technical principle of NODDI and its application in neurodegenerative diseases, in order to provide imaging reference for future research.
[Keywords] neurodegenerative diseases;Alzheimer's disease;Parkinson's disease;amyotrophic lateral sclerosis;Huntington's disease;neurite density;orientation dispersion;magnetic resonance imaging;diffusion weighted imaging;diffusion tensor imaging

LI Xiaoyang1   WANG Xiaochun2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan 030001, China

Wang XC, E-mail:

Conflicts of interest   None.

Received  2022-05-26
Accepted  2022-11-07
DOI: 10.12015/issn.1674-8034.2022.11.022
Cite this article as: Li XY, Wang XC. Research progress of neurite orientation dispersion and density imaging in neurodegenerative diseases[J]. Chin J Magn Reson Imaging, 2022, 13(11): 115-118.DOI:10.12015/issn.1674-8034.2022.11.022

Tariq M, Schneider T, Alexander DC, et al. Bingham-NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI[J]. NeuroImage, 2016, 133: 207-223. DOI: 10.1016/j.neuroimage.2016.01.046.
Fu XW, Wu QL, Luo Y, et al. Study on the microstructure of white matter in amnestic mild cognitive impairment by axonal dispersion and density imaging[J]. J Clin Radiol, 2020, 39(3): 461-465. DOI: 10.13437/j.cnki.jcr.2020.03.009.
Azad A, Cabeen RP, Sepehrband F, et al. Microstructural properties within the amygdala and affiliated white matter tracts across adolescence[J/OL]. NeuroImage, 2021, 243: 118489 [2022-05-31]. DOI: 10.1016/j.neuroimage.2021.118489.
Zhang H, Schneider T, Wheeler-Kingshott CA, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain[J]. NeuroImage, 2012, 61(4): 1000-1016. DOI: 10.1016/j.neuroimage.2012.03.072.
Kamiya K, Hori M, Aoki S. NODDI in clinical research[J/OL]. J Neurosci Methods, 2020, 346: 108908 [2022-05-25]. DOI: 10.1016/j.jneumeth.2020.108908.
Lee MB, Kim YH, Jahng GH, et al. Angular resolution enhancement technique for diffusion-weighted imaging (DWI) using predicted diffusion gradient directions[J/OL]. NeuroImage, 2018, 183: 836-846 [2022-10-14]. DOI: 10.1016/j.neuroimage.2018.08.072.
Wei ZH, Wang H, Ju C, et al. Study of hippocampal microstructure in Alzheimer's disease and amnestic mild cognitive impairment by magnetic resonance NODDI technique[J]. Chin J Magn Reson Imaging, 2022, 13(2): 26-30, 36. DOI: 10.12015/issn.1674-8034.2022.02.006
Kamagata K, Zalesky A, Hatano T, et al. Gray matter abnormalities in idiopathic Parkinson's disease: evaluation by diffusional kurtosis imaging and neurite orientation dispersion and density imaging[J]. Hum Brain Mapp, 2017, 38(7): 3704-3722. DOI: 10.1002/hbm.23628.
Andica C, Kamagata K, Hatano T, et al. MR biomarkers of degenerative brain disorders derived from diffusion imaging[J]. J Magn Reson Imaging, 2020, 52(6): 1620-1636. DOI: 10.1002/jmri.27019.
Merluzzi AP, Dean DC, Adluru N, et al. Age-dependent differences in brain tissuemicrostructure assessed with neurite orientation dispersion and density imaging[J]. Neurobiol Aging, 2016, 43: 79-88. DOI: 10.1016/j.neurobiolaging.2016.03.026.
Martinez-Heras E, Grussu F, Prados F, et al. Diffusion-weighted imaging: recent advances and applications[J]. Semin Ultrasound CT & MR, 2021, 42(5): 490-506. DOI: 10.1053/j.sult.2021.07.006.
Aisen PS, Cummings J, Jack CR, et al. On the path to 2025: understanding the Alzheimer's disease continuum[J/OL]. Alzheimer's Res & Ther, 2017, 9(1): 60 [2022-05-25]. DOI: 10.1186/s13195-017-0283-5.
Yang P, Zhou F, Ni D, et al. Fused sparse network learning for longitudinal analysis of mild cognitive impairment[J]. IEEE Trans Cybern, 2021, 51(1): 233-246. DOI: 10.1109/TCYB.2019.2940526.
Fu X, Shrestha S, Sun M, et al. Microstructural white matter alterations inmild cognitive impairment and Alzheimer's disease: Study based on neuriteorientation dispersion and density imaging (NODDI)[J]. Clin Neuroradiol, 2020, 30(3): 569-579. DOI: 10.1007/s00062-019-00805-0.
Wen Q, Mustafi SM, Li J, et al. White matter alterations in early-stage alzheimer's disease: a tract-specific study[J]. Alzheimer's & Dementia (Amsterdam, Netherlands), 2019, 11: 576-587. DOI: 10.1016/j.dadm.2019.06.003.
Wen Q, Risacher SL, Xie L, et al. Tau-related white-matter alterations along spatially selective pathways[J/OL]. NeuroImage, 2021, 226: 117560 [2022-05-25]. DOI: 10.1016/j.neuroimage.2020.117560.
Raghavan S, Przybelski SA, Reid RI, et al. White matter damage due to vascular, tau, and TDP-43 pathologies and its relevance to cognition[J/OL]. Acta Neuropathol Commun, 2022, 10(1): 16 [2022-05-25]. DOI: 10.1186/s40478-022-01319-6.
Slattery CF, Zhang J, Paterson RW, et al. ApoE influences regional white-matter axonal density loss in Alzheimer's disease[J]. Neurobiology of Aging, 2017, 57: 8-17. DOI: 10.1016/j.neurobiolaging.2017.04.021.
Parker TD, Slattery CF, Zhang J, et al. Cortical microstructure in young onset Alzheimer's disease using neurite orientation dispersion and density imaging[J]. Hum Brain Mapp, 2018, 39(7): 3005-3017. DOI: 10.1002/hbm.24056.
Vogt NM, Hunt JF, Adluru N, et al. Cortical microstructural alterations in mild cognitive impairment and Alzheimer's disease dementia[J]. Cereb Cortex, 2020, 30(5): 2948-2960. DOI: 10.1093/cercor/bhz286.
Vogt NM, Hunt JFV, Adluru N, et al. Interaction of amyloid and tau on cortical microstructure in cognitively unimpaired adults[J]. Alzheimer's & Dement, 2022, 18(1): 65-76. DOI: 10.1002/alz.12364.
Sone D, Shigemoto Y, Ogawa M, et al. Association between neurite metrics and tau/inflammatory pathology in Alzheimer's disease[J/OL]. Alzheimer's &Dement (Amst), 2020, 12(1): e12125 [2022-05-25]. DOI: 10.1002/dad2.12125.
Shahid SS, Wen Q, Risacher SL, et al. Hippocampal-subfield microstructures and their relation to plasma biomarkers in Alzheimer's disease[J]. Brain, 2022, 145(6): 2149-2160. DOI: 10.1093/brain/awac138.
Mole JP, Fasano F, Evans J, et al. APOE-ε4-related differences in left thalamic microstructure in cognitively healthy adults[J]. Scientific Reports, 2020, 10(1): 1-25. DOI: 10.1038/s41598-020-75992-9.
Evans SL, Dowell NG, Prowse F, et al. Mid age APOE ε4 carriers show memory-related functional differences and disrupted structure-function relationships in hippocampal regions[J]. Sci Rep, 2020, 10(1): 1-11. DOI: 10.1038/s41598-020-59272-0.
Reas ET, Hagler DJ, Kuperman JM, et al. Associations between microstructure, amyloid, and cognition in amnestic mild cognitive impairment and dementia[J]. J Alzheimer's Dis, 2020, 73(1): 347-357. DOI: 10.3233/JAD-190871.
Gozdas E, Fingerhut H, Dacorro L, et al. Neurite imaging reveals widespread alterations in gray and white matter neurite morphology in healthy aging and amnestic mild cognitive impairment[J]. Cereb Cortex, 2021, 31(12): 5570-5578. DOI: 10.1093/cercor/bhab180.
Colgan N, Siow B, O'Callaghan JM, et al. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease[J]. NeuroImage, 2016, 125: 739-744. DOI: 10.1016/j.neuroimage.2015.10.043.
Colon-Perez LM, Ibanez KR, Suarez M, et al. Neurite orientation dispersion and density imaging reveals white matter and hippocampal microstructurechanges produced by Interleukin-6 in the TgCRND8 mouse model of amyloidosis[J/OL]. NeuroImage, 2019, 202: 116138 [2022-05-25]. DOI: 10.1016/j.neuroimage.2019.116138.
Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson's disease[J]. Neurobiol Aging, 2003, 24(2): 197-211. DOI: 10.1016/s0197-4580(02)00065-9.
Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity[J]. Brain, 1991, 114(Pt 5): 2283-2301. DOI: 10.1093/brain/114.5.2283.
Kamagata K, Andica C, Kato A, et al. Diffusion magnetic resonance imaging-based biomarkers for neurodegenerative diseases[J/OL]. Int J Mol Sci, 2021, 22(10): 5216 [2022-05-25]. DOI: 10.3390/ijms22105216.
Compta Y, Painous C, Soto M, et al. Combined CSF α-SYN RT-QuIC, CSF NFL and midbrain-pons planimetry in degenerative parkinsonisms: from bedside to bench, and back again[J]. Parkinsonism & Relat Disord, 2022, 99: 33-41. DOI: 10.1016/j.parkreldis.2022.05.006.
Kamagata K, Hatano T, Okuzumi A, et al. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease[J]. Eur Radiol, 2016, 26(8): 2567-2577. DOI: 10.1007/s00330-015-4066-8.
Andica C, Kamagata K, Hatano T, et al. Neurite orientation dispersion anddensity imaging of the nigrostriatal pathway in Parkinson's disease: retrograde degeneration observed by tract-profile analysis[J]. Parkinsonism & Relat Disord, 2018, 51: 55-60. DOI: 10.1016/j.parkreldis.2018.02.046.
Guo T, Wu J, Zhou C, et al. Aberrant fiber coherence of amygdala-accumbens-pallidum pathway is associated with disorganized nigrostriatal-nigropallidal pathway in Parkinson's disease[J]. J Magn Reson Imaging, 2020, 52(6): 1799-1808. DOI: 10.1002/jmri.27273.
Andica C, Kamagata K, Hatano T, et al. Neurocognitive and psychiatric disorders-related axonal degeneration in Parkinson's disease[J]. J Neurosci Res, 2020, 98(5): 936-949. DOI: 10.1002/jnr.24584.
Mitchell T, Archer DB, Chu WT, et al. Neurite orientation dispersion and density imaging (NODDI) and free-water imaging in Parkinsonism[J]. Hum Brain Mapp, 2019, 40(17): 5094-5107. DOI: 10.1002/hbm.24760.
Mitchell T, Wilkes BJ, Archer DB, et al. Advanced diffusion imaging to track progression in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy[J/OL]. NeuroImage Clin, 2022, 34: 103022 [2022-05-28]. DOI: 10.1016/j.nicl.2022.103022.
Ogawa T, Hatano T, Kamagata K, et al. White matter and nigral alterations in multiple system atrophy-parkinsonian type[J/OL]. NPJ Parkinson's Dis, 2021, 7(1): 96 [2022-05-28]. DOI: 10.1038/s41531-021-00236-0.
Yasaka K, Kamagata K, Ogawa T, et al. Parkinson's disease: deep learningwith a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation[J]. Neuroradiol, 2021, 63(9): 1451-1462. DOI: 10.1007/s00234-021-02648-4.
Bange M, Gonzalez-Escamilla G, Lang NSC, et al. Gait abnormalities in Parkinson's disease are associated with extracellular free-water in the substantia nigra[J]. J Parkinson's Dis, 2022, 12(5): 1575-1590. DOI: 10.3233/JPD-223225.
Oskarsson B, Gendron TF, Staff NP. Amyotrophic lateral sclerosis: an update for 2018[J]. Mayo Clin Proc, 2018, 93(11): 1617-1628. DOI: 10.1016/j.mayocp.2018.04.007.
Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review[J]. Eur J Neurol, 2020, 27(10): 1918-1929. DOI: 10.1111/ene.14393.
Gatto RG, Amin M, Finkielsztein A, et al. Unveiling early cortical and subcortical neuronal degeneration in ALS mice by ultra-high field diffusion MRI[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2019, 20(7-8): 549-561. DOI: 10.1080/21678421.2019.1620285.
Zamani A, Walker AK, Rollo B, et al. Early and progressive dysfunction revealed by in vivo neurite imaging in the rNLS8 TDP-43 mouse model ofALS[J/OL]. NeuroImage Clin, 2022, 34: 103016 [2022-05-28]. DOI: 10.1016/j.nicl.2022.103016.
Broad RJ, Gabel MC, Dowell NG, et al. Neurite orientation and dispersiondensity imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS[J]. J Neurol Neurosurg Psychiatry, 2019, 90(4): 404-411. DOI: 10.1136/jnnp-2018-318830.
Wen J, Zhang H, Alexander DC, et al. Neurite density is reduced in the presymptomatic phase of C9orf72 disease[J]. J Neurol Neurosurg Psychiatryx, and Psychiatry, 2019, 90(4): 387-394. DOI: 10.1136/jnnp-2018-318994.
Kim A, Lalonde K, Truesdell A, et al. New avenues for the treatment of Huntington's disease[J/OL]. Int J Mol Sci, 2021, 22(16): 8363 [2022-05-28]. DOI: 10.3390/ijms22168363.
Zhang J, Gregory S, Scahill RI, et al. In vivo characterization of white matter pathology in premanifest huntington's disease[J]. Ann Neurol, 2018, 84(4): 497-504. DOI: 10.1002/ana.25309.
Estevez-Fraga C, Scahill R, Rees G, et al. Diffusion imaging in Huntington's disease: comprehensive review[J]. J Neurol Neurosurg Psychiatry, 2020, 92(1): 62-69. DOI: 10.1136/jnnp-2020-324377.
Gatto RG, Weissmann C, Amin M, et al. Evaluation of early microstructural changes in the R6/1 mouse model of huntington's disease by ultra-high field diffusion MR imaging[J]. Neurobiol Aging, 2021, 102: 32-49. DOI: 10.1016/j.neurobiolaging.2021.02.006.

PREV Application value of multi-modal imaging technique in early diagnosis of Alzheimer,s disease
NEXT New progress in the application of diffusion tensor imaging in autism spectrum disorders

Tel & Fax: +8610-67113815    E-mail: