Share:
Share this content in WeChat
X
Clinical Article
Predictive value of Gd-EOB-DTPA enhanced MRI features and hepatobiliary phase histogram parameters in response to transarterial chemoembolization for hepatocellular carcinoma
TENG Fei  REN Jipeng  YAN Ruifang  CAI Mingxi  HAN Dongming 

Cite this article as: Teng F, Ren JP, Yan RF, et al. Predictive value of Gd-EOB-DTPA enhanced MRI features and hepatobiliary phase histogram parameters in response to transarterial chemoembolization for hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(11): 71-75. DOI:10.12015/issn.1674-8034.2022.11.013.


[Abstract] Objective To evaluate the value of Gd-EOB-DTPA enhanced MRI and hepatobiliary tumor histogram parameters in predicting the response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma.Materials and Methods Fifty-four patients with newly diagnosed HCC treated in the First Affiliated Hospital of Xinxiang Medical College from June 2020 to June 2021 were collected. The imaging features of the lesions were evaluated, and the histogram mean, variation, kurtosis, skewness, 10th percentile (Perc10%), 90th percentile (Perc90%), entropy, maximum, minimum and median values of hepatobiliary lesions were extracted. According to modified Response Evaluation Criteria in Solid Tumors (mRECIST), the differences of imaging features and histogram parameters in different response groups after TACE were analyzed. Logistic regression and receiver operating characteristic (ROC) curves were used to analyze the predictive value of meaningful parameters for response.Results There were 28 cases in response group and 26 cases in non-response group. The incidences of incomplete capsule, arterial phase peritumoral enhancement and hepatobiliary peritumoral hypointensity in the non-response group were significantly higher than those in the response group (P<0.05). The mean value, degree of variability, Perc10% and median response group were significantly higher than those in the non-response group. Logistic regression analysis showed that peritumoral enhancement in arterial phase, low signal intensity and degree of variation in hepatobiliary phase were independent influencing factors of response (P<0.05). The area under the ROC curve, sensitivity and specificity of the combined parameters were 0.904 (95% CI: 0.816-0.992), 80.8% and 96.4%, respectively.Conclusions Periarterial tumor enhancement, perihepatobiliary tumor hypointense and variation are independent predictors of response after TACE, and the predictive model combining qualitative indicators and quantitative parameters has good predictive efficacy, which helps in the precision treatment of HCC patients.
[Keywords] hepatocellular carcinoma;chemoembolization;response reaction;hepatobiliary phase;Gd-EOB-DTPA;histograms;magnetic resonance imaging

TENG Fei   REN Jipeng   YAN Ruifang   CAI Mingxi   HAN Dongming*  

Department of Magnetic Resonance, the First Affiliated Hospital of Xinxiang Medical College, Xinxiang 453100, China

Han DM, E-mail: 625492590@qq.com

Conflicts of interest   None.

Received  2022-07-08
Accepted  2022-10-08
DOI: 10.12015/issn.1674-8034.2022.11.013
Cite this article as: Teng F, Ren JP, Yan RF, et al. Predictive value of Gd-EOB-DTPA enhanced MRI features and hepatobiliary phase histogram parameters in response to transarterial chemoembolization for hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(11): 71-75.DOI:10.12015/issn.1674-8034.2022.11.013

[1]
Koh DM, Ba-Ssalamah A, Brancatelli G, et al. Consensus report from the 9th International Forum for Liver Magnetic Resonance Imaging: applications of gadoxetic acid-enhanced imaging[J]. Eur Radiol, 2021, 31(8): 5615-5628. DOI: 10.1007/s00330-020-07637-4.
[2]
Zhang Y, Tang WJ, Xie SD, et al. The role of lesion hypointensity on gadobenate dimeglumine-enhanced hepatobiliary phase MRI as an additional major imaging feature for HCC classification using LI-RADS v2018 criteria[J]. Eur Radiol, 2021, 31(10): 7715-7724. DOI: 10.1007/s00330-021-07807-y.
[3]
Chen JB, Kuang SC, Zhang Y, et al. Increasing the sensitivity of LI-RADS v2018 for diagnosis of small (10-19 mm) HCC on extracellular contrast-enhanced MRI[J]. Abdom Radiol (NY), 2021, 46(4): 1530-1542. DOI: 10.1007/s00261-020-02790-2.
[4]
Rong DL, He BJ, Tang WJ, et al. Comparison of gadobenate-enhanced MRI and gadoxetate-enhanced MRI for hepatocellular carcinoma detection using LI-RADS version 2018: a prospective intraindividual randomized study[J]. AJR Am J Roentgenol, 2022, 218(4): 687-698. DOI: 10.2214/AJR.21.26818.
[5]
Lewis S, Peti S, Hectors SJ, et al. Volumetric quantitative histogram analysis using diffusion-weighted magnetic resonance imaging to differentiate HCC from other primary liver cancers[J]. Abdom Radiol (NY), 2019, 44(3): 912-922. DOI: 10.1007/s00261-019-01906-7.
[6]
Nitta H, Allard MA, Sebagh M, et al. Prognostic value and prediction of extratumoral microvascular invasion for hepatocellular carcinoma[J]. Ann Surg Oncol, 2019, 26(8): 2568-2576. DOI: 10.1245/s10434-019-07365-0.
[7]
Shaghaghi M, Aliyari Ghasabeh M, Ameli S, et al. Post-TACE changes in ADC histogram predict overall and transplant-free survival in patients with well-defined HCC: a retrospective cohort with up to 10 years follow-up[J]. Eur Radiol, 2021, 31(3): 1378-1390. DOI: 10.1007/s00330-020-07237-2.
[8]
Alnammi M, Wortman J, Therrien J, et al. MRI features of treated hepatocellular carcinoma following locoregional therapy: a pictorial review[J]. Abdom Radiol (NY), 2022, 47(7): 2299-2313. DOI: 10.1007/s00261-022-03526-0.
[9]
Morshid A, Elsayes KM, Khalaf AM, et al. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization[J/OL]. Radiol Artif Intell, 2019, 1(5) [2022-07-11]. https://doi.org/10.1148/ryai.2019180021. DOI: 10.1148/ryai.2019180021.
[10]
Kuang YN, Li RZ, Jia P, et al. MRI-Based Radiomics: Nomograms predicting the short-term response after transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma patients with diameter less than 5 cm[J]. Abdom Radiol (NY), 2021, 46(8): 3772-3789. DOI: 10.1007/s00261-021-02992-2.
[11]
Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update[J]. J Hepatol, 2022, 76(3): 681-693. DOI: 10.1016/j.jhep.2021.11.018.
[12]
Llovet JM, De Baere T, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(5): 293-313. DOI: 10.1038/s41575-020-00395-0.
[13]
Pirasteh A, Sorra EA, Marquez H, et al. LI-RADS treatment response algorithm after first-line DEB-TACE: reproducibility and prognostic value at initial post-treatment CT/MRI[J]. Abdom Radiol (NY), 2021, 46(8): 3708-3716. DOI: 10.1007/s00261-021-03043-6.
[14]
Kubota K, Hisa N, Nishikawa T, et al. Evaluation of hepatocellular carcinoma after treatment with transcatheter arterial chemoembolization: comparison of Lipiodol-CT, power Doppler sonography, and dynamic MRI[J]. Abdom Imaging, 2001, 26(2): 184-190. DOI: 10.1007/s002610000139.
[15]
Piscaglia F, Ogasawara S. Patient selection for transarterial chemoembolization in hepatocellular carcinoma: importance of benefit/risk assessment[J]. Liver Cancer, 2018, 7(1): 104-119. DOI: 10.1159/000485471.
[16]
Tselikas L, Pigneur F, Roux M, et al. Impact of hepatobiliary phase liver MRI versus Contrast-Enhanced Ultrasound after an inconclusive extracellular gadolinium-based contrast-enhanced MRI for the diagnosis of benign hepatocellular tumors[J]. Abdom Radiol (NY), 2017, 42(3): 825-832. DOI: 10.1007/s00261-016-0921-6.
[17]
Liu QP, Yang KL, Xu X, et al. Radiomics analysis of pretreatment MRI in predicting tumor response and outcome in hepatocellular carcinoma with transarterial chemoembolization: a two-center collaborative study[J]. Abdom Radiol, 2022, 47(2): 651-663. DOI: 10.1007/s00261-021-03375-3.
[18]
Yokoo T, Singal AG, Diaz de Leon A, et al. Prevalence and clinical significance of discordant LI-RADS® observations on multiphase contrast-enhanced MRI in patients with cirrhosis[J]. Abdom Radiol (NY), 2020, 45(1): 177-187. DOI: 10.1007/s00261-019-02133-w.
[19]
Gao AK, Zhang HT, Yan X, et al. Whole-tumor histogram analysis of multiple diffusion metrics for glioma genotyping[J/OL]. Radiology, 2022, 302(3) [2022-07-11]. https://pubmed.ncbi.nlm.nih.gov/35196177. DOI: 10.1148/radiol.219034.
[20]
Lee JW, Kim JY, Han K, et al. Coronary CT angiography CAD-RADS versus coronary artery calcium score in patients with acute chest pain[J]. Radiology, 2021, 301(1): 81-90. DOI: 10.1148/radiol.2021204704.
[21]
Xia C, Zhou JY, Lu CQ, et al. Characterizing diaschisis-related thalamic perfusion and diffusion after middle cerebral artery infarction[J]. Stroke, 2021, 52(7): 2319-2327. DOI: 10.1161/STROKEAHA.120.032464.
[22]
Shin J, Lee S, Yoon JK, et al. LI‐RADS major features onMRI for diagnosing hepatocellular carcinoma: a systematic review andMeta-analysis[J]. J Magn Reson Imaging, 2021, 54(2): 518-525. DOI: 10.1002/jmri.27570.
[23]
Kuang DL, Ren JZ, Duan XH, et al. Study on the enhanced morphology around MRI after DEB-TACE in primary hepatocellular carcinoma[J]. Chin J Hepatobiliary Surg, 2020, 26(9): 687-690. DOI: 10.3760/cma.j.cn113884-20191211-00407.
[24]
Nakajo M, Jinguji M, Nakabeppu Y, et al. Texture analysis of 18F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy[J]. Eur J Nucl Med Mol Imaging, 2017, 44(2): 206-214. DOI: 10.1007/s00259-016-3506-2.
[25]
Gao EY, Gao AK, Kung WK, et al. Histogram analysis based on diffusion kurtosis imaging: Differentiating glioblastoma multiforme from single brain metastasis and comparing the diagnostic performance of two region of interest placements[J/OL]. Eur J Radiol, 2022, 147 [2022-07-11]. https://doi.org/10.1016/j.ejrad.2021. DOI: 10.1016/j.ejrad.2021.110104.
[26]
Ren JL, Yuan Y, Tao XF. Histogram analysis of diffusion-weighted imaging and dynamic contrast-enhanced MRI for predicting occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma[J]. Eur Radiol, 2022, 32(4): 2739-2747. DOI: 10.1007/s00330-021-08310-0.
[27]
Zhang Y, Yang M, Wang FR, et al. Histogram analysis of quantitative susceptibility mapping for the diagnosis of Parkinson's disease[J]. Acad Radiol, 2022, 29(Suppl 3): S71-S79. DOI: 10.1016/j.acra.2020.10.027.
[28]
Xie TW, Zhao QF, Fu CX, et al. Improved value of whole-lesion histogram analysis on DCE parametric maps for diagnosing small breast cancer (≤1 cm)[J]. Eur Radiol, 2022, 32(3): 1634-1643. DOI: 10.1007/s00330-021-08244-7.
[29]
Beleù A, Rizzo G, de Robertis R, et al. Liver tumor burden in pancreatic neuroendocrine tumors: CT features and texture analysis in the prediction of tumor grade and 18F-FDG uptake[J/OL]. Cancers (Basel), 2020, 12(6) [2022-07-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352332. DOI: 10.3390/cancers12061486.
[30]
Zhao JT, Gao SS, Sun W, et al. Magnetic resonance imaging and diffusion-weighted imaging-based histogram analyses in predicting glypican 3-positive hepatocellular carcinoma[J/OL]. Eur J Radiol, 2021, 139 [2022-07-11]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(21)00212-6. DOI: 10.1016/j.ejrad.2021.109732.
[31]
Azoulay A, Cros J, Vullierme MP, et al. Morphological imaging and CT histogram analysis to differentiate pancreatic neuroendocrine tumor grade 3 from neuroendocrine carcinoma[J]. Diagn Interv Imaging, 2020, 101(12): 821-830. DOI: 10.1016/j.diii.2020.06.006.
[32]
Chen J, Wu ZR, Xia CC, et al. Noninvasive prediction of HCC with progenitor phenotype based on gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2020, 30(2): 1232-1242. DOI: 10.1007/s00330-019-06414-2.
[33]
Hu MJ, Yu YX, Fan YF, et al. The value of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid enhanced MRI nomogram model for predicting Ki-67 expression of hepatocellular carcinoma[J]. Chin J Radiol, 2020, 54(12): 1185-1190. DOI: 10.3760/cma.j.cn112149-20191206-00968.
[34]
Ma XL, Ren XJ, Shen MH, et al. Volumetric ADC histogram analysis for preoperative evaluation of LVSI status in stage I endometrioid adenocarcinoma[J]. Eur Radiol, 2022, 32(1): 460-469. DOI: 10.1007/s00330-021-07996-6.
[35]
Zhao F, Pang GD, Li XJ, et al. Value of perfusion parameters histogram analysis of triphasic CT in differentiating intrahepatic mass forming cholangiocarcinoma from hepatocellular carcinoma[J/OL]. Sci Rep, 2021, 11 [2022-07-11]. https://www.nature.com/articles/s41598-021-02667-4. DOI: 10.1038/s41598-021-02667-4.

PREV Value of T2* mapping MRI in quantitative assessment of diabetic macular edema with retinal hemorrhage
NEXT Radiomics prediction model for the improved diagnosis of clinically significant prostate cancer on biparametric MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn