Share:
Share this content in WeChat
X
Clinical Article
Application value of FOCUS diffusion weighted imaging in the diagnosis of microprolactinomas
WANG Minyang  YU Ying  YAN Linfeng  HAN Yu  YANG Yang  LIANG Shouheng  WANG Yuyao  CUI Guangbin 

Cite this article as: Wang MY, Yu Y, Yan LF, et al. Application value of FOCUS diffusion weighted imaging in the diagnosis of microprolactinomas[J]. Chin J Magn Reson Imaging, 2022, 13(11): 60-65. DOI:10.12015/issn.1674-8034.2022.11.011.


[Abstract] Objective To explore the diagnostic value of FOCUS (field of view optimized and constrained undistorted single-shot) diffusion weighted imaging (DWI) in microprolactinomas.Materials and Methods This retrospective study included 32 patients with microprolactinomas and 24 patients with hyperprolactinemia. The images of non-enhanced, dynamic enhanced, and FOCUS DWI were analyzed, and the apparent diffusion coefficient (ADC) values were measured in the FOCUS DWI sequences. The ADC values of the lesion and the adjacent uninvolved pituitary in microprolactinomas cases and the mean ADC values of hyperprolactinemia group were compared. ANOVA with randomized block design was used to compare the ADC values of the left, middle and right anterior pituitary in hyperprolactinemia group. The receiver operating characteristic (ROC) curve was performed to evaluate the diagnostic efficacy of the ADC ratio (rADC) between the lesion and the adjacent uninvolved pituitary in microprolactinomas cases.Results The ADC values of the lesions in microprolactinomas group were lower than that of the adjacent uninvolved pituitary region and the mean ADC values of anterior pituitary gland in hyperprolactinemia group (P<0.001), and no significant difference were found between the latter two (P=0.120). In hyperprolactinemia group, the ADC values of middle anterior pituitary were significantly higher than that of left and right anterior pituitary (Pright=0.001, Pleft=0.012). No significant difference was found between the ADC values in left and right anterior pituitary (P=1.000). The area under ROC curve in the diagnosis of microprolactinomas by rADC was 0.793.Conclusions FOCUS DWI can help to distinguish microprolactinomas from simple hyperprolactinemia pituitary, and it can be considered as an auxiliary diagnosis means of microprolactinomas, which could provide objective evidence for clinicians to make the best treatment plan.
[Keywords] microprolactinomas;hyperprolactinemia;saddle area;magnetic resonance imaging;diffusion weighted imaging;apparent diffusion coefficient

WANG Minyang1, 2   YU Ying2   YAN Linfeng2   HAN Yu2   YANG Yang2   LIANG Shouheng2   WANG Yuyao2   CUI Guangbin1, 2*  

1 Faculty of Medical Technology, Shannxi University of Chinese Medicine, Xianyang 712046, China

2 Department of Radiology, Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China

Cui GB, E-mail: cgbtd@126.com

Conflicts of interest   None.

Received  2022-08-13
Accepted  2022-11-07
DOI: 10.12015/issn.1674-8034.2022.11.011
Cite this article as: Wang MY, Yu Y, Yan LF, et al. Application value of FOCUS diffusion weighted imaging in the diagnosis of microprolactinomas[J]. Chin J Magn Reson Imaging, 2022, 13(11): 60-65.DOI:10.12015/issn.1674-8034.2022.11.011

[1]
Chanson P, Maiter D. The epidemiology, diagnosis and treatment of Prolactinomas: The old and the new[J/OL]. Best Pract Res Clin Endocrinol Metab, 2019, 33(2): 101290 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/31326373/. DOI: 10.1016/j.beem.2019.101290.
[2]
Fukuhara N, Nishiyama M, Iwasaki Y. Update in Pathogenesis, Diagnosis, and Therapy of Prolactinoma[J/OL]. Cancers (Basel), 2022, 14(15): 3604 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/35892862/. DOI: 10.3390/cancers14153604.
[3]
OʼLaughlin D. Infertility secondary to a pituitary adenoma[J]. JAAPA, 2018, 31(8): 26-28. DOI: 10.1097/01.JAA.0000533659.78664.a5.
[4]
Cocks Eschler D, Javanmard P, Cox K, et al. Prolactinoma through the female life cycle[J]. Endocrine, 2018, 59(1): 16-29. DOI: 10.1007/s12020-017-1438-7.
[5]
Eisenhut F, Schlaffer SM, Hock S, et al. Ultra-High-Field 7 T Magnetic Resonance Imaging Including Dynamic and Static Contrast-Enhanced T1-Weighted Imaging Improves Detection of Secreting Pituitary Microadenomas[J]. Invest Radiol, 2022, 57(9): 567-574. DOI: 10.1097/RLI.0000000000000872.
[6]
MacFarlane J, Bashari WA, Senanayake R, et al. Advances in the Imaging of Pituitary Tumors[J]. Endocrinol Metab Clin North Am, 2020, 49(3): 357-373. DOI: 10.1016/j.ecl.2020.06.002.
[7]
Cironi KA, Decater T, Iwanaga J, et al. Arterial Supply to the Pituitary Gland: A Comprehensive Review[J]. World Neurosurg, 2020, 142: 206-211. DOI: 10.1016/j.wneu.2020.06.221.
[8]
Friedman TC, Zuckerbraun E, Lee ML, et al. Dynamic pituitary MRI has high sensitivity and specificity for the diagnosis of mild Cushing's syndrome and should be part of the initial workup[J]. Horm Metab Res, 2007, 39(6): 451-456. DOI: 10.1055/s-2007-980192.
[9]
Taheri MS, Ghomi Z, Mirshahi R, et al. Usefulness of subtraction images for accurate diagnosis of pituitary microadenomas in dynamic contrast-enhanced magnetic resonance imaging[J/OL]. Acta Radiol, 2022, 2841851221107344 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/35731731/. DOI: 10.1177/02841851221107344.
[10]
Kleinschmidt-DeMasters BK. Histological features of pituitary adenomas and sellar region masses[J]. Curr Opin Endocrinol Diabetes Obes, 2016, 23(6): 476-484. DOI: 10.1097/MED.0000000000000293.
[11]
Deng BD, Li Z, Hu DY, et al. Clinical value of reduced fieldof-view diffusion-weighted imaging in cervical cancer. Chin J Magn Reson Imaging, 2020, 11(7): 487-492. DOI: 10.12015/issn.1674-8034.2020.07.002.
[12]
Foesleitner O, Sulaj A, Sturm V, et al. Diffusion MRI in Peripheral Nerves: Optimized b Values and the Role of Non-Gaussian Diffusion[J]. Radiology, 2022, 302(1): 153-161. DOI: 10.1148/radiol.2021204740.
[13]
Zhang J, Zhao Z, Dong L, et al. Differentiating between non-functioning pituitary macroadenomas and sellar meningiomas using ADC[J]. Endocr Connect, 2020, 9(12): 1233-1239. DOI: 10.1530/EC-20-0434.
[14]
Zhou S, Zha YF, Xing D, et al. The feasibility of reduced field-of-view DWI in the evaluation of bone marrow edema in knee joint contusion[J]. Chin J Magn Reson Imaging, 2021, 12(2): 52-56. DOI: 10.12015/issn.1674-8034.2021.02.012.
[15]
Yang H, Cui X, Zheng X, et al. Preliminary quantitative analysis of vertebral microenvironment changes in type 2 diabetes mellitus using FOCUS IVIM-DWI and IDEAL-IQ sequences[J]. Magn Reson Imaging, 2021, 84: 84-91. DOI: 10.1016/j.mri.2021.09.008.
[16]
Wang XY, Bai HL, Gong B. Application of high-resolution reduced field of vision DWI of renal magnetic resonance imaging in the diagnosis of renal tumors[J]. Pract J Cancer, 2021, 36(7): 1190-1193. DOI: 10.3969/j.issn.1001-5930.2021.07.037.
[17]
Wang M, Liu H, Wei X, et al. Application of Reduced-FOV Diffusion-Weighted Imaging in Evaluation of Normal Pituitary Glands and Pituitary Macroadenomas[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1499-1504. DOI: 10.3174/ajnr.A5735.
[18]
Xie S. Clinical application of MRI in pituitary diseases[J]. Chin J Radiol, 2019, 53(9): 797-800. DOI: 10.3760/cma.j.issn.1005-1201.2019.09.021
[19]
Zhang YM, Wang Q, He JZ, et al. Diagnostic value of Vascular functionnal parameters in dynamic contrast-enhanced MRI for pituitary microadenomas[J]. J Med Imaging, 2017, 27(2): 189-194.
[20]
Feng Z, Min X, Sah VK, et al. Comparison of field-of-view (FOV) optimized and constrained undistorted single shot (FOCUS) with conventional DWI for the evaluation of prostate cancer[J]. Clin Imaging, 2015, 39(5): 851-855. DOI: 10.1016/j.clinimag.2015.03.004.
[21]
Fu Q, Kong XC, Liu DX, et al. Clinical application of turbo gradient and spin echo-BLADE diffusion weighted imaging at the sellar region[J]. Chin J Radiol, 2022, 56(1): 81-86. DOI: 10.3760/cma.j.cn112149-20210223-00148.
[22]
Hiwatashi A, Togao O, Yamashita K, et al. Evaluation of diffusivity in pituitary adenoma: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation[J/OL]. Br J Radiol, 2016, 89(1063): 20150755 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/27187598/. DOI: 10.1259/bjr.20150755.
[23]
Bozgeyik Z, Coskun S, Dagli AF, et al. Diffusion-weighted MR imaging of thyroid nodules[J]. Neuroradiology, 2009, 51(3): 193-198. DOI: 10.1007/s00234-008-0494-3.
[24]
Lai HH, Lei Q, Xiao JQ, et al. Diagnostic value of diffusion weighted imaging in pulmonary solid benign and malignant lesions[J]. J Pract Radiol, 2021, 37(12): 1959-1962, 2005. DOI: 10.3969/j.issn.1002-1671.2021.12.008.
[25]
Su T, Yang X, Wang R, et al. Characteristics of diffusion-weighted and blood oxygen level-dependent magnetic resonance imaging in Tubulointerstitial nephritis: an initial experience[J/OL]. BMC Nephrol, 2021, 22(1): 237 [2022-08-12]. DOI: 10.1186/s12882-021-02435-6.
[26]
Xing JM, Hu CH, Zhu M. Parameters Optimization of Diffusion-weighted Imaging of the Pituitary Macroadenoma at 1.5T MR[J]. Suzhou Univ J Med Sci, 2010, 30(4): 837-841.
[27]
Takahara T, Kwee TC. Low b-value diffusion-weighted imaging:emerging applications in the body[J]. J Magn Reson Imaging, 2012, 35(6): 1266-1273. DOI: 10.1002/jmri.22857.
[28]
Zhang R, Bai Y, Wei W, et al. Basic principles of intravoxel incoherent motion and diffusional kurtosis imaging and their applications in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2020, 11(9): 804-808. DOI: 10.12015/issn.1674-8034.2020.09.019.
[29]
Li XQ, Yao X, Yang DW, et al. Detection of Focal Liver Lesions with Diffusion Weighted Imaging: Results of A Multi-center Clinical Trial[J]. Chin J Med Imaging, 2015, 23(5): 356-360. DOI: 10.3969/j.issn.1005-5185.2015.05.009.
[30]
Su CQ, Zhang X, Pan T, et al. Texture Analysis of High b-Value Diffusion-Weighted Imaging for Evaluating Consistency of Pituitary Macroadenomas[J]. J Magn Reson Imaging, 2020, 51(5): 1507-1513. DOI: 10.1002/jmri.26941.
[31]
Kamimura K, Nakajo M, Fukukura Y, et al. Intravoxel Incoherent Motion in Normal Pituitary Gland: Initial Study with Turbo Spin-Echo Diffusion-Weighted Imaging[J]. AJNR Am J Neuroradiol, 2016, 37(12): 2328-2333. DOI: 10.3174/ajnr.A4930.
[32]
Khant ZA, Azuma M, Kadota Y, et al. Evaluation of pituitary structures and lesions with turbo spin-echo diffusion-weighted imaging[J]. J Neurol Sci, 2019, 405: 116390 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/31476623/. DOI: 10.1016/j.jns.2019.07.008.
[33]
Hiwatashi A, Yoshiura T, Togao O, et al. Evaluation of diffusivity in the anterior lobe of the pituitary gland: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation[J]. AJNR Am J Neuroradiol, 2014, 35(1): 95-98. DOI: 10.3174/ajnr.A3620.
[34]
Lu YP, Liu H, Zhou K, et al. Diffusion-weighted imaging of the sellar region: a comparison study of BLADE and single-shot echo planar imaging sequences[J]. Eur J Radiol, 2014, 83(7): 1239-1244. DOI: 10.1016/j.ejrad.2014.03.011.

PREV Differentiation of high-grade glioma and solitary brain metastasis based on radiomics features fusion of multiparametric MRI
NEXT Value of T2* mapping MRI in quantitative assessment of diabetic macular edema with retinal hemorrhage
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn