Share:
Share this content in WeChat
X
Special Focus
Prediction of tumor cell proliferation activity in nasopharyngeal carcinoma by nomogram based on multiparametric MRI radiomics combined with clinic-radiological features
WANG Zhuo  LIU Shili  ZHANG Shaoru  ZHOU Yunshu  ZHANG Ruodi  CHEN Zhiqiang 

Cite this article as: Wang Z, Liu SL, Zhang SR, et al. Prediction of tumor cell proliferation activity in nasopharyngeal carcinoma by nomogram based on multiparametric MRI radiomics combined with clinic-radiological features[J]. Chin J Magn Reson Imaging, 2022, 13(11): 30-36, 41. DOI:10.12015/issn.1674-8034.2022.11.006.


[Abstract] Objective To explore the value of nomogram based on multiparametric MRI radiomics combined with clinic-radiological features in predicting high expression of Ki-67 in nasopharyngeal carcinoma (NPC).Materials and Methods Retrospectively analyzed the clinical and MRI data of 171 NPC patients from December 2015 to May 2022 in the General Hospital of Ningxia Medical University. According to the expression level of Ki-67, patients were divided into the high Ki-67 group (n=105) and the low Ki-67 group (n=66). We used 3D-Slicer to segment the region of interest and "Pyradiomic" package to extract features. Univariate and multivariate logistic regression and least absolute shrinkage and selection operator regression were performed to select the independent risk factors of high Ki-67 expression and then construct the predictive models. Predictive power among models was assessed and compared by using the area under the receiver operating characteristic (ROC) curve and DeLong test. The clinical utility of the nomogram was demonstrated by the decision curve analysis (DCA).Results Logistic regression results reported that the markedly enhanced tumor focus (OR=4.064, P=0.005), Epstein‐Barr virus deoxyribo nucleic acid (EBV‐DNA)≥5000 IU/mL (OR=3.809, P=0.007) were significant clinical predictors of high Ki-67 expression, which can be applied to establish a clinical model. Seven, four, and two radiomics features significantly related to the high expression of Ki-67 from contrast enhanced T1-weighted imaging (T1WI_CE), T1-weighted imaging (TIWI) and T2-weighted imaging fat suppression (T2WI_FS) were selected to construct a radiomics model. EBV‐DNA, the degree of enhancement and radiomics score (Rad-score) were used to develop the nomogram model. The ROC curve demonstrated that the AUCs of the nomogram model were higher than those of the clinical or radiomics models (training set: 0.887 vs. 0.701, 0.861; validation set: 0.860 vs. 0.749, 0.814). In the training and validation sets, the AUCs of the nomogram model were statistically significantly higher than those of the clinical model (DeLong test, P<0.05).Conclusions The nomogram model based on multiparametric MRI radiomics combined with clinic-radiological features has high performance in predicting Ki-67 expression status in NPC patients prior to radiotherapy and chemotherapy, which is better than the single model and can be served as a non-invasive predictive tool.
[Keywords] nasopharyngeal carcinoma;Ki-67;radiological features;multi-parameter;magnetic resonance imaging;radiomics;nomogram

WANG Zhuo1   LIU Shili1   ZHANG Shaoru1   ZHOU Yunshu1   ZHANG Ruodi1   CHEN Zhiqiang2, 3*  

1 Clinical Medicine School of Ningxia Medical University, Yinchuan 750004, China

2 Department of Radiology, the First Hospital Affiliated to Hainan Medical College, Haikou 570102, China

3 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

Chen ZQ, E-mail: zhiqiang_chen99@163.com

Conflicts of interest   None.

Received  2022-06-17
Accepted  2022-11-10
DOI: 10.12015/issn.1674-8034.2022.11.006
Cite this article as: Wang Z, Liu SL, Zhang SR, et al. Prediction of tumor cell proliferation activity in nasopharyngeal carcinoma by nomogram based on multiparametric MRI radiomics combined with clinic-radiological features[J]. Chin J Magn Reson Imaging, 2022, 13(11): 30-36, 41.DOI:10.12015/issn.1674-8034.2022.11.006

[1]
Tang LL, Chen YP, Chen CB, et al. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma[J]. Cancer Commun (Lond), 2021, 41(11): 1195-1227. DOI: 10.1002/cac2.12218.
[2]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
Shi Z, Jiang W, Chen X, et al. Prognostic and clinicopathological value of Ki-67 expression in patients with nasopharyngeal carcinoma: a meta-analysis[J/OL]. Ther Adv Med Oncol, 2020, 20, 12: 1758835920951346 [2022-06-01]. https://doi.org/10.1177/1758835920951346. DOI: 10.1177/1758835920951346.
[4]
Fu Q, Liu SL, Hao DP, et al. CT Radiomics Model for Predicting the Ki-67 Index of Lung Cancer[J/OL]. Front Oncol, 2021, 11: 743490 [2022-06-01]. https://doi.org/10.3389/fonc.2021.743490. DOI: 10.3389/fonc.2021.743490.
[5]
Remnant L, Kochanova NY, Reid C, et al. The intrinsically disorderly story of Ki-67[J/OL]. Open Biol, 2021, 11(8): 210120 [2022-06-01]. https://pubmed.ncbi.nlm.nih.gov/34375547/. DOI: 10.1098/rsob.210120.
[6]
Stamatiou K, Vagnarelli P. Chromosome clustering in mitosis by the nuclear protein Ki-67[J]. Biochem Soc Trans, 2021, 49(6): 2767-2776. DOI: 10.1042/BST20210717.
[7]
Bruixola G, Remacha E, Jiménez-Pastor A, et al. Radiomics and radiogenomics in head and neck squamous cell carcinoma: Potential contribution to patient management and challenges[J/OL]. Cancer Treat Rev, 2021, 99: 102263 [2022-06-01]. https://doi.org/10.1016/j.ctrv.2021.102263. DOI: 10.1016/j.ctrv.2021.102263.
[8]
Jiang T, Song J, Wang X, et al. Intratumoral and Peritumoral Analysis of Mammography, Tomosynthesis, and Multiparametric MRI for Predicting Ki-67 Level in Breast Cancer: a Radiomics-Based Study[J]. Mol Imaging Biol, 2022, 24(4): 550-559. DOI: 10.1007/s11307-021-01695-w.
[9]
Sun X, Pang P, Lou L, et al. Radiomic prediction models for the level of Ki-67 and p53 in glioma[J/OL]. J Int Med Res, 2020, 48(5): 300060520914466 [2022-06-01]. https://doi.org/10.1177/0300060520914466. DOI: 10.1177/0300060520914466.
[10]
Liu XD, Wang XY, Ning G, et al. Pre-academic prediction of Ki-67 expression in invasive ductal carcinoma of the breast by MRI imaging group[J]. Chin J Med Imaging Technol, 2022, 38(2): 210-214. DOI: 10.13929/j.issn.1003-3289.2022.02.012.
[11]
Fang ZY, Li KZ, Yang M, et al. Integration of MRI-Based Radiomics Features, Clinicopathological Characteristics, and Blood Parameters: A Nomogram Model for Predicting Clinical Outcome in Nasopharyngeal Carcinoma[J/OL]. Front Oncol, 2022, 12: 815952 [2022-10-02]. https://doi.org/10.3389/fonc.2022.815952. DOI: 10.3389/fonc.2022.815952.
[12]
He T, Yan RN, Chen HY, et al. Comparing the 7th and 8th editions of UICC/AJCC staging system for nasopharyngeal carcinoma in the IMRT era[J/OL]. BMC Cancer, 2021, 21(1): 327 [2022-06-01]. https://pubmed.ncbi.nlm.nih.gov/33785010/. DOI: 10.1186/s12885-021-08036-8.
[13]
Wu W, Jiang G, Xu Z, et al. Three-dimensional pulsed continuous arterial spin labeling and intravoxel incoherent motion imaging of nasopharyngeal carcinoma: correlations with Ki-67 proliferation status[J]. Quant Imaging Med Surg, 2021, 11(4): 1394-1405. DOI: 10.21037/qims-20-349.
[14]
Li Y, Yue L, Li Y, et al. Prognostic value of Ki-67 in nasopharyngeal carcinoma: a meta-analysis[J/OL]. Biosci Rep, 2021, 28, 41(5): BSR20203334 [2022-06-01]. https://doi.org/10.1042/BSR20203334. DOI: 10.1042/BSR20203334.
[15]
You B, Shan Y, Shi S, et al. Effects of ADAM10 upregulation on progression, migration, and prognosis of nasopharyngeal carcinoma[J]. Cancer Sci, 2015, 106(11): 1506-1514. DOI: 10.1111/cas.12800.
[16]
Shi S, Li XY, You B, et al. High Expression of FGFR4 Enhances Tumor Growth and Metastasis in Nasopharyngeal Carcinoma[J]. J Cancer, 2015, 6(12): 1245-1254. DOI: 10.7150/jca.12825.
[17]
Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction[J]. IEEE Trans Med Imaging, 2010, 29(6): 1310-1320. DOI: 10.1109/TMI.2010.2046908.
[18]
Wang F, Jiang C, Wang L, et al. Influence of concurrent chemotherapy on locoregionally advanced nasopharyngeal carcinoma treated with neoadjuvant chemotherapy plus intensity-modulated radiotherapy: A retrospective matched analysis[J/OL]. Sci Rep, 2020, 10(1): 2489 [2022-06-01]. https://doi.org/10.1038/s41598-020-59470-w. DOI: 10.1038/s41598-020-59470-w.
[19]
Zhang L, Chen QY, Liu H, et al. Emerging treatment options for nasopharyngeal carcinoma. Drug Des Devel Ther, 2013, 7: 37-52. DOI: 10.2147/DDDT.S30753.
[20]
Airoldi M, Garzaro M, Valente G, et al. Clinical and biological prognostic factors in 179 cases with sinonasal carcinoma treated in the Italian Piedmont region[J]. Oncology, 2009, 76(4): 262-269. DOI: 10.1159/000206140.
[21]
Fu Q, Liu SL, Hao DP, et al. CT Radiomics Model for Predicting the Ki-67 Index of Lung Cancer[J/OL]. Front Oncol, 2021, 11: 743490 [2022-06-03]. https://doi.org/10.3389/fonc.2021.743490. DOI: 10.3389/fonc.2021.743490.
[22]
Remnant L, Kochanova NY, Reid C, et al. The intrinsically disorderly story of Ki-67[J/OL]. Open Biol, 2021, 11(8): 210120 [2022-06-03]. https://doi.org/10.1098/rsob.210120. DOI: 10.1098/rsob.210120.
[23]
Stamatiou K, Vagnarelli P. Chromosome clustering in mitosis by the nuclear protein Ki-67[J]. Biochem Soc Trans, 2021, 49(6): 2767-2776. DOI: 10.1042/BST20210717.
[24]
Deng LD, Guo BL, Du YX, et al. The value of T1 mapping in clinical staging of nasopharyngeal carcinoma and its correlation with EGFR and Ki-67 index[J]. Chin J Magn Reson Imaging, 2022, 13(3): 66-70. DOI: 10.12015/issn.1674-8034.2022.03.013.
[25]
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[26]
Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The promise of radiomics[J]. Phys Med, 2017, 38: 122-139. DOI: 10.1016/j.ejmp.2017.05.071.
[27]
Sun X, Kaufman PD. Ki-67: more than a proliferation marker[J]. Chromosoma, 2018, 127(2): 175-186. DOI: 10.1007/s00412-018-0659-8.
[28]
Ganeshan B, Goh V, Mandeville HC, et al. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT[J]. Radiology, 2013, 266(1): 326-336. DOI: 10.1148/radiol.12112428.
[29]
Liu J, Mao Y, Li Z, et al. Use of texture analysis based on contrast-enhanced MRI to predict treatment response to chemoradiotherapy in nasopharyngeal carcinoma[J]. J Magn Reson Imaging, 2016, 44(2): 445-455. DOI: 10.1002/jmri.25156.
[30]
Wang X, Liang LK, Su XH, et al. Value of MRI multi-sequence model fusion radiomics in predicting the response to concurrent chemoradiotherapy in patients with locally advanced nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(6): 10-16. DOI: 10.12015/issn.1674-8034.2022.06.003.
[31]
Kijima T, Kinukawa N, Gooding WE, et al. Association of Epstein‐Barr virus with tumor cell proliferation: clinical implication in nasopharyngeal carcinoma[J]. Int J Oncol, 2001, 18(3): 479-485. DOI: 10.3892/ijo.18.3.479.
[32]
Yin H, Qu J, Peng Q, et al. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis[J]. Med Microbiol Immunol, 2019, 208(5): 573-583. DOI: 10.1007/s00430-018-0570-1.

PREV Prediction of distant metastasis in nasopharyngeal carcinoma by interpretable machine learning model based on multiparametric MRI radiomics and clinical factors
NEXT Research progress of brain magnetic resonance imaging in patients with primary open-angle glaucoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn