Share this content in WeChat
Special Focus
Probe of the central mechanism of adult patients with amblyopia based on rs-fMRI technique
WANG Yige  ZHAO Tong  ZHANG Xiangfei  LIU Bing  YANG Aocai  LÜ Kuan  MA Guolin 

Cite this article as: Wang YG, Zhao T, Zhang XF, et al. Probe of the central mechanism of adult patients with amblyopia based on rs-fMRI technique[J]. Chin J Magn Reson Imaging, 2022, 13(11): 12-16, 29. DOI:10.12015/issn.1674-8034.2022.11.003.

[Abstract] Objective To explore the central mechanism of adult patients with amblyopia by resting state-functional magnetic resonance imaging (rs-fMRI).Materials and Methods We recruited 21 adult patients with amblyopia and 22 healthy controls (HC) group matched with age, sex and education as subjects. Clinical data including best corrected visual acuity, stereopsis, self-rating anxiety and depression scale were performed. Meanwhile, rs-fMRI was collected and preprocessed with DPARSF software. The difference of regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuation (fALFF) between the two groups and the correlation between ReHo, fALFF and clinical data in changed brain regions were analyzed.Results In all recruited adult patients with amblyopic, fALFF value of right superior temporal gyrus decreased, while fALFF of right angular gyrus increased (cluster level, P<0.01). ReHo value of right fusiform gyrus and lingual gyrus of occipital lobe increased. What's more, fALFF of bilateral fusiform gyrus and left calcarine fissure in left-sided amblyopic patients significantly increased (cluster level, P<0.05). ReHo of bilateral fusiform gyrus also increased (cluster level, P<0.05). fALFF of right superior temporal gyrus decreased and right middle frontal gyrus increased in right-sided patients (cluster level, P<0.01). These values in the differential brain regions did not correlate significantly with Self-Rating Anxiety Scale (SAS) and Self-Rating Depression Scale (SDS) scores.Conclusions In the central mechanism of adult patients with amblyopia, the activation and ReHo changes in occipital and temporal cortex may be involved in the functional compensation of visual information processing caused by visual impairment, which helps to further reveal the central mechanism of adult amblyopia.
[Keywords] amblyopia adults;resting state-magnetic resonance imaging;magnetic resonance imaging;regional homogeneity;fractional amplitude of low-frequency fluctuation

WANG Yige1, 2   ZHAO Tong3   ZHANG Xiangfei4   LIU Bing1, 2   YANG Aocai1, 2   LÜ Kuan2   MA Guolin2*  

1 Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China

2 Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China

3 Department of Ophthalmology, China-Japan Friendship Hospital, Beijing 100029, China

4 Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China

Ma GL, E-mail:

Conflicts of interest   None.

Received  2022-07-05
Accepted  2022-11-14
DOI: 10.12015/issn.1674-8034.2022.11.003
Cite this article as: Wang YG, Zhao T, Zhang XF, et al. Probe of the central mechanism of adult patients with amblyopia based on rs-fMRI technique[J]. Chin J Magn Reson Imaging, 2022, 13(11): 12-16, 29.DOI:10.12015/issn.1674-8034.2022.11.003

Chinese Association for Pediatric Ophthalmology and Strabismus, Pediatric Ophthalmology and Strabismus Group of Chinese Ophthalmologist Association. Expert consensus on prevention and treatment of amblyopia in children[J]. Chin J Ophthalmol, 2021, 57(5): 336-340. DOI: 10.3760/cma.j.cn112142-20210109-00014.
Li YX, Li L, Ding SZ. New progress in adult amblyopia regeneration[J]. Chin J Strabismus & Pediatr Ophthalmol, 2021, 29(2): 45-46, 32. DOI: 10.3969/J.ISSN.1005-328X.2021.02.015.
Li RY, Li XQ. Application and progress of binocular therapy in amblyopia[J]. Int Eye Sci, 2021, 21(2): 275-278. DOI: 10.3980/j.issn.1672-5123.2021.2.17.
Li RY, Lü XY, Zhu DH. Emerging treatment of Amblyopia and the plasticity in visual system[J]. Chin J Strabismus Pediatr Ophthalmol, 2020, 28(3): 37-40. DOI: 10.3969/J.ISSN.1005-328X.2020.03.013.
Brown HD, Woodall RL, Kitching RE, et al. Using magnetic resonance imaging to assess visual deficits: a review[J]. Ophthalmic Physiol Opt, 2016, 36(3): 240-265. DOI: 10.1111/opo.12293.
Glover GH. Overview of functional magnetic resonance imaging[J]. Neurosurg Clin N Am, 2011, 22(2): 133-139. DOI: 10.1016/
Wang YG, Gao WW, Liu B, et al. Study progress of magnetic resonance imaging in age-related macular degeneration[J]. Chin J Magn Reson Imaging, 2022, 13(1): 154-156, 160. DOI: 10.12015/issn.1674-8034.2022.01.036.
Yin XH, Chen LJ, Ma MY, et al. Altered brain structure and spontaneous functional activity in children with concomitant strabismus[J/OL]. Front Hum Neurosci, 2021, 15: 777762 [2022-07-04]. DOI: 10.3389/fnhum.2021.777762.
Peng JX, Yao F, Li QY, et al. Alternations of interhemispheric functional connectivity in children with strabismus and amblyopia: a resting-state fMRI study[J/OL]. Sci Rep, 2021, 11(1): 15059 [2022-07-05]. DOI: 10.1038/s41598-021-92281-1.
Lu WZ, Yu XL, Zhao LS, et al. Enhanced gray matter volume compensates for decreased brain activity in the ocular motor area in children with anisometropic amblyopia[J/OL]. Neural Plast, 2020, 2020: 8060869 [2022-07-01]. DOI: 10.1155/2020/8060869.
Wen W, Wang Y, Zhou JW, et al. Loss and enhancement of layer-selective signals in geniculostriate and corticotectal pathways of adult human amblyopia[J/OL]. Cell Rep, 2021, 37(11): 110117 [2022-07-01]. DOI: 10.1016/j.celrep.2021.110117.
Dai PS, Zhou XY, Ou YL, et al. Altered effective connectivity of children and young adults with unilateral amblyopia: a resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2021, 15: 657576 [2022-07-01]. DOI: 10.3389/fnins.2021.657576.
Miller NP, Aldred B, Schmitt MA, et al. Impact of amblyopia on the central nervous system[J]. J Binocul Vis Ocul Motil, 2020, 70(4): 182-192. DOI: 10.1080/2576117X.2020.1841710.
Lygo FA, Richard B, Wade AR, et al. Neural markers of suppression in impaired binocular vision[J/OL]. NeuroImage, 2021, 230: 117780 [2022-07-01]. DOI: 10.1016/j.neuroimage.2021.117780.
Liang ML, Xiao H, Xie B, et al. Morphologic changes in the visual cortex of patients with anisometropic amblyopia: a surface-based morphometry study[J/OL]. BMC Neurosci, 2019, 20(1): 39 [2022-07-01]. DOI: 10.1186/s12868-019-0524-6.
Min YL, Su T, Shu YQ, et al. Altered spontaneous brain activity patterns in strabismus with amblyopia patients using amplitude of low-frequency fluctuation: a resting-state fMRI study[J]. Neuropsychiatr Dis Treat, 2018, 14: 2351-2359. DOI: 10.2147/NDT.S171462.
Zhang X, Cheng BC, Yang X, et al. Emotional intelligence mediates the protective role of the orbitofrontal cortex spontaneous activity measured by fALFF against depressive and anxious symptoms in late adolescence[J/OL]. Eur Child Adolesc Psychiatry, 2022 [2022-07-01]. DOI: 10.1007/s00787-022-02020-8.
Humphreys GF, Lambon Ralph MA, Simons JS. A unifying account of angular gyrus contributions to episodic and semantic cognition[J]. Trends Neurosci, 2021, 44(6): 452-463. DOI: 10.1016/j.tins.2021.01.006.
Yang XB, Zhang JR, Lang LJ, et al. Assessment of cortical dysfunction in infantile esotropia using fMRI[J]. Eur J Ophthalmol, 2014, 24(3): 409-416. DOI: 10.5301/ejo.5000368.
Feng YX, Li RY, Wei W, et al. The acts of opening and closing the eyes are of importance for congenital blindness: evidence from resting-state fMRI[J/OL]. Neuroimage, 2021, 233: 117966 [2022-07-04]. DOI: 10.1016/j.neuroimage.2021.117966.
Chatterjee A, Thomas A, Smith SE, et al. The neural response to facial attractiveness[J]. Neuropsychology, 2009, 23(2): 135-143. DOI: 10.1037/a0014430.
Zou QH, Ross TJ, Gu H, et al. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance[J]. Hum Brain Mapp, 2013, 34(12): 3204-3215. DOI: 10.1002/hbm.22136.
Jabeen L, Khalil M, Mannan S, et al. Variation of length of calcarine sulcus in different age & sex groups of Bangladeshi people[J]. Mymensingh Med J, 2021, 30(1): 154-158.
Shao Y, Li QH, Li B, et al. Altered brain activity in patients with strabismus and amblyopia detected by analysis of regional homogeneity: a resting-state functional magnetic resonance imaging study[J]. Mol Med Rep, 2019, 19(6): 4832-4840. DOI: 10.3892/mmr.2019.10147.
Palejwala AH, Dadario NB, Young IM, et al. Anatomy and white matter connections of the lingual gyrus and cuneus[J/OL]. World Neurosurg, 2021, 151: e426-e437 [2022-07-01]. DOI: 10.1016/j.wneu.2021.04.050.
Virgili G, Parravano M, Petri D, et al. The association between vision impairment and depression: a systematic review of population-based studies[J/OL]. J Clin Med, 2022, 11(9): 2412 [2022-07-01]. DOI: 10.3390/jcm11092412.
Bouguiyoud N, Roullet F, Bronchti G, et al. Anxiety and depression assessments in a mouse model of congenital blindness[J/OL]. Front Neurosci, 2022, 15: 807434 [2022-07-01]. DOI: 10.3389/fnins.2021.807434.
Gao W, Dai PF, Wang YQ, et al. Associations of walking impairment with visual impairment, depression, and cognitive function in US older adults: NHANES 2013-2014[J]. BMC Geriatr, 2022, 22(1): 487. DOI: 10.1186/s12877-022-03189-y.
Xue WW, Zou HD. Rasch analysis of the Chinese version of the low vision quality of life questionnaire[J]. Chin J Ophthalmol, 2019, 55(8): 582-588. DOI: 10.3760/cma.j.issn.0412-4081.2019.08.007.

PREV Diffusion kurtosis imaging study of cerebral cortex microstructure damage in patients with normal tension glaucoma
NEXT The value of quantitative parameters on magnetization transfer imaging of lacrimal glands in distinguishing the clinical activity of thyroid-associated ophthalmopathy

Tel & Fax: +8610-67113815    E-mail: