Share:
Share this content in WeChat
X
Special Focus
Diffusion kurtosis imaging study of cerebral cortex microstructure damage in patients with normal tension glaucoma
LI Ting  QU Xiaoxia  WANG Qian  XIAN Junfang 

Cite this article as: Li T, Qu XX, Wang Q, et al. Diffusion kurtosis imaging study of cerebral cortex microstructure damage in patients with normal tension glaucoma[J]. Chin J Magn Reson Imaging, 2022, 13(11): 6-11. DOI:10.12015/issn.1674-8034.2022.11.002.


[Abstract] Objective Diffusion kurtosis imaging (DKI) was used to study the cerebral cortical microstructure alterations of normal tension glaucoma (NTG), so as to provide imaging evidence for further elucidating the mechanism of cerebral cortical alterations in NTG.Materials and Methods The DKI data of 37 NTG patients who were diagnosed in our hospital and 37 healthy control subjects recruited from November 2016 to May 2020 were analyzed. The fractional anisotropy (FA), mean kurtosis (MK), radial kurtosis (RK) and axial kurtosis (AK) of 44 brain regions of the two groups of subjects were extracted using the Human Connectome Project multimodal parcellation atlas. The differences between the two groups were compared using the student t-test. Afterwards, the correlations between the DKI parameters of abnormal brain areas and the mean defect of visual field in NTG patients were analyzed.Results In NTG patients, the FA values of bilateral insula and frontal opercular, temporoparietal occipital junction, superior parietal lobule, inferior parietal lobule, anterior cingulate gyrus and medial prefrontal lobe, left dorsolateral prefrontal lobe, right ventral stream of visual pathway, middle temporal complex (MT+) with neighboring visual areas, and early auditory cortex decreased (P<0.05, FDR correction). The MK value of MT+ complex with neighboring visual areas decreased (P=0.0134, FDR correction). There was no significant difference between the RK values of NTG patients and those of the normal control subjects in the whole brain (P>0.05, FDR correction). AK values decreased in bilateral MT+ complex with neighboring visual areas, insular lobe and frontal opercular, anterior cingulate gyrus and medial prefrontal lobe, left inferior parietal lobule, orbital gyrus and frontal pole, right ventral stream of visual pathway, and temporoparietal occipital junction (P<0.05, FDR correction). The FA values of bilateral temporoparietal occipital junction, right anterior cingulate gyrus and medial prefrontal lobe were positively correlated with the mean defect of visual field of both eyes. The FA values of left anterior cingulate gyrus and medial prefrontal lobe, and the ventral stream of right visual pathway were positively correlated with the mean defect of visual field of the left eye, and the FA values of right insula and frontal opercular were positively correlated with the mean defect of visual field of the right eye (P<0.05).Conclusions DKI can detect the multiple microstructure damages in the cerebral cortex of NTG patients, including visual cortex, salience network, default network, dorsal attention network, temporoparietal occipital junction, early auditory cortex, orbital gyrus and frontal pole. FA value can reflect the correlation between brain microstructure damage and disease severity of patients, so it is a potential biological index.
[Keywords] normal tension glaucoma;brain;neurodegeneration;magnetic resonance imaging;diffusion kurtosis imaging;diffusion tensor imaging

LI Ting   QU Xiaoxia   WANG Qian   XIAN Junfang*  

Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China

Xian JF, E-mail: cjr.xianjunfang@vip.163.com

Conflicts of interest   None.

Received  2022-08-05
Accepted  2022-11-10
DOI: 10.12015/issn.1674-8034.2022.11.002
Cite this article as: Li T, Qu XX, Wang Q, et al. Diffusion kurtosis imaging study of cerebral cortex microstructure damage in patients with normal tension glaucoma[J]. Chin J Magn Reson Imaging, 2022, 13(11): 6-11.DOI:10.12015/issn.1674-8034.2022.11.002

[1]
Song P, Wang J, Bucan K, et al. National and subnational prevalence and burden of glaucoma in China: A systematic analysis[J/OL]. J Glob Health, 2017, 7(2): 020705 [2022-11-9]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737099. DOI: 10.7189/jogh.07.020705.
[2]
Glaucoma Group of Ophthalmology Branch of Chinese Medical Association. Expert consensus on diagnosis and treatment of normal tension glaucoma in China (2019)[J]. Chin J Ophthalmol, 2019(5): 329-332. DOI: 10.3760/cma.j.issn.0412-4081.2019.05.003.
[3]
Reis TF, Paula JS, Furtado JM. Primary glaucomas in adults: Epidemiology and public health-a review[J]. Clinical Exper Ophthalmology, 2022, 50(2): 128-142. DOI: 10.1111/ceo.14040.
[4]
Killer HE, Pircher A. Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis[J]. Eye (Lond), 2018, 32(5): 924-930. DOI: 10.1038/s41433-018-0042-2.
[5]
Fan N, Wang Y, Tan JK, et al. Normal tension glaucoma: reconsideration and reevaluation[J]. Chin J Exp Ophthalmol, 2022, 40(4): 345-350. DOI: 10.3760/cma.j.cn115989-20210712-00408.
[6]
Juźwik CA, Drake S S, Zhang Y, et al. MicroRNA dysregulation in neurodegenerative diseases: a systematic review[J/OL]. Prog Neurobiol, 2019, 182: 101664 [2022-11-9]. https://linkinghub.elsevier.com/retrieve/pii/S0301-0082(18)30203-X. DOI: 10.1016/j.pneurobio.2019.101664.
[7]
Faiq MA, Wollstein G, Schuman JS, et al. Cholinergic nervous system and glaucoma: from basic science to clinical applications[J/OL]. Prog Retin Eye Res, 2019, 72: 100767 [2022-11-9]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739176. DOI: 10.1016/j.preteyeres.2019.06.003.
[8]
Li T, Qu XX, Chen WW, et al. Altered information flow and microstructure abnormalities of visual cortex in normal-tension glaucoma: Evidence from resting-state fMRI and DKI[J/OL]. Brain Res, 2020, 1741: 146874 [2022-11-9]. https://linkinghub.elsevier.com/retrieve/pii/S0006-8993(20)30230-4. DOI: 10.1016/j.brainres.2020.146874.
[9]
Pankowska A, Matwiejczuk S, Kozioł P, et al. Visual tract degradation in bilateral normal-tension glaucoma-cortical thickness maps and volumetric study of visual pathway areas[J/OL]. J Clin Med. 2022, 11(7): 1907 [2022-11-9]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999724. DOI: 10.3390/jcm11071907.
[10]
Giorgio A, Zhang J, Costantino F, et al. Diffuse brain damage in normal tension glaucoma[J]. Hum Brain Mapp, 2018, 39(1): 532-541. DOI: 10.1002/hbm.23862.
[11]
Wang R, Tang ZH, Sun XH, et al. White matter abnormalities and correlation with severity in normal tension glaucoma: a whole brain atlas-based diffusion tensor study[J]. Invest Ophthalmol Vis Sci, 2018, 59(3): 1313-1322. DOI: 10.1167/iovs.17-23597.
[12]
Zhang HJ, Mi XS, So KF. Normal tension glaucoma: from the brain to the eye or the inverse?[J]. Neural Regen Res, 2019, 14(11): 1845-1850. DOI: 10.4103/1673-5374.259600.
[13]
Xu ZF, Sun JS, Zhang XH, et al. Microstructural visual pathway abnormalities in patients with primary glaucoma: 3 T diffusion kurtosis imaging study[J/OL]. Clin Radiol, 2018, 73(6): 591.e599-e515 [2022-11-9]. https://linkinghub.elsevier.com/retrieve/pii/S0009-9260(18)30034-5. DOI: 10.1016/j.crad.2018.01.010.
[14]
Nucci C, Garaci F, Altobelli S, et al. Diffusional kurtosis imaging of white matter degeneration in glaucoma[J/OL]. J Clin Med, 2020, 9(10): 3122 [2022-11-9]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600134. DOI: 10.3390/jcm9103122.
[15]
Friedrich P, Fraenz C, Schlüter C, et al. The relationship between axon density, myelination, and fractional anisotropy in the human corpus callosum[J]. Cereb Cortex, 2020, 30(4): 2042-2056. DOI: 10.1093/cercor/bhz221.
[16]
Zhang JH, Lang N, Yuan HS. Research advances in diffusional kurtosis imaging[J]. Chin J Magn Reson Imaging, 2018, 9(4): 316-320. DOI: 10.12015/issn.1674-8034.2018.04.016.
[17]
Zhang R, Bai Y, Wei W, et al. Basic principles of intravoxel incoherent motion and diffusional kurtosis imaging and their applications in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2020, 11(9): 804-808. DOI: 10.12015/issn.1674-8034.2020.09.019
[18]
Di Ciò F, Garaci F, Minosse S, et al. Reorganization of the structural connectome in primary open angle glaucoma[J/OL]. Neuroimage Clin, 2020, 28: 102419 [2022-11-9]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552094. DOI: 10.1016/j.nicl.2020.102419.
[19]
Li T, Liu ZY, Li JH, et al. Altered amplitude of low-frequency fluctuation in primary open-angle glaucoma: a resting-state FMRI study[J]. Invest Ophthalmol Vis Sci, 2014, 56(1): 322-329. DOI: 10.1167/iovs.14-14974.
[20]
Wang Q, Qu XX, Chen WW, et al. Altered coupling of cerebral blood flow and functional connectivity strength in visual and higher order cognitive cortices in primary open angle glaucoma[J]. J Cereb Blood Flow Metab, 2021, 41(4): 901-913. DOI: 10.1177/0271678X20935274.
[21]
Wang Q, Chen WW, Wang HZ, et al. Reduced functional and anatomic interhemispheric homotopic connectivity in primary open-angle glaucoma: a combined resting state-fMRI and DTI study[J]. Invest Ophthalmol Vis Sci, 2018, 59(5): 1861-1868. DOI: 10.1167/iovs.17-23291.
[22]
Kang LD, Wan C. Application of advanced magnetic resonance imaging in glaucoma: a narrative review[J]. Quant Imaging Med Surg, 2022, 12(3): 2106-2128. DOI: 10.21037/qims-21-790.
[23]
Huang CC, Rolls ET, Feng JF, et al. An extended Human Connectome Project multimodal parcellation atlas of the human cortex and subcortical areas[J]. Brain Struct Funct, 2022, 227(3): 763-778. DOI: 10.1007/s00429-021-02421-6.
[24]
Lawlor M, Danesh-Meyer H, Levin LA, et al. Glaucoma and the brain: trans-synaptic degeneration, structural change, and implications for neuroprotection[J]. Surv Ophthalmol, 2018, 63(3): 296-306. DOI: 10.1016/j.survophthal.2017.09.010.
[25]
Li HL, Chou XM, Liang Y, et al. Use of rsfMRI-fALFF for the detection of changes in brain activity in patients with normal-tension glaucoma[J]. Acta Radiol, 2021, 62(3): 414-422. DOI: 10.1177/0284185120926901.
[26]
Seeley WW. The salience network: a neural system for perceiving and responding to homeostatic demands[J]. J Neurosci, 2019, 39(50): 9878-9882. DOI: 10.1523/JNEUROSCI.1138-17.2019.
[27]
Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis[J]. Proc Natl Acad Sci USA, 2003, 100(1): 253-258. DOI: 10.1073/pnas.0135058100.
[28]
Ahrens MM, Veniero D, Freund IM, et al. Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation[J]. Cortex, 2019, 117: 168-181. DOI: 10.1016/j.cortex.2019.02.031.
[29]
De Benedictis A, Duffau H, Paradiso B, et al. Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective[J]. J Anat, 2014, 225(2): 132-151. DOI: 10.1111/joa.12204.

PREV Improve the value of quantitative MRI in the diagnosis and treatment of head and neck diseases
NEXT Probe of the central mechanism of adult patients with amblyopia based on rs-fMRI technique
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn