Share:
Share this content in WeChat
X
Special Focus
Improve the value of quantitative MRI in the diagnosis and treatment of head and neck diseases
XIAN Junfang 

Cite this article as: Xian JF. Improve the value of quantitative MRI in the diagnosis and treatment of head and neck diseases[J]. Chin J Magn Reson Imaging, 2022, 13(11): 1-5. DOI:10.12015/issn.1674-8034.2022.11.001.


[Abstract] The anatomic structures in head and neck are tiny and complex, but high resolution MRI significantly improve the diagnostic performance of MRI in the demonstration of anatomic structures and lesions in head and neck region. Quantitative MRI plays an important role in the identification, diagnosis, stage, grade, evaluation of treatment response, and prediction of prognosis as well as elucidation of the pathological mechanisms of head and neck diseases, such as optic neuritis, thyroid-associated ophthalmopathy, post-laminar optic nerve invasion from retinoblastoma, nasopharyngeal carcinoma, oropharyngeal carcinoma, laryngeal carcinoma, thyroid carcinoma, sinonasal inverted papilloma, pleomorphic salivary adenoma, lymphoma, inflammatory pseudotumor, etc. The problems and the problem-solving strategies are also described. In the future, the study design will be conducted strictly with inclusion and exclusion criteria defined. According to the same criteria of the diagnosis, evaluation, and prediction of the head and neck diseases, national large-sample multicenter prospective researches will be developed so as to establish patient-centered and problem-guided protocols of quantitative MRI of the head and neck diseases. These protocols will further improve the value of quantitative MRI in the diagnosis and treatment of head and neck diseases, which will be applied nationwide promoting diagnosis and treatment of head and neck diseases and protecting people's health.
[Keywords] optic neuritis;thyroid-associated ophthalmopathy;retinoblastoma;nasopharyngeal carcinoma;oropharyngeal carcinoma;laryngeal carcinoma;thyroid carcinoma;inverted papilloma;pleomorphic adenoma;lymphoma;inflammatory pseudotumor;glaucoma;magnetic resonance imaging;dynamic contrast enhancement;diffusion weighted imaging;arterial spin labeling;diagnosis;treatment response evaluation;pathological mechanism;prognosis prediction

XIAN Junfang*  

Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China

Xian JF, E-mail: cjr.xianjunfang@vip.163.com

Conflicts of interest   None.

Received  2022-11-11
Accepted  2022-11-13
DOI: 10.12015/issn.1674-8034.2022.11.001
Cite this article as: Xian JF. Improve the value of quantitative MRI in the diagnosis and treatment of head and neck diseases[J]. Chin J Magn Reson Imaging, 2022, 13(11): 1-5.DOI:10.12015/issn.1674-8034.2022.11.001

[1]
Park SI, Guenette JP, Suh CH, et al. The diagnostic performance of CT and MRI for detecting extranodal extension in patients with head and neck squamous cell carcinoma: a systematic review and diagnostic meta-analysis[J]. Eur Radiol, 2021, 31(4): 2048-2061. DOI: 10.1007/s00330-020-07281-y.
[2]
Coudert H, Mirafzal S, Dissard A, et al. Multiparametric magnetic resonance imaging of parotid tumors: a systematic review[J]. Diagn Interv Imaging, 2021, 102(3): 121-130. DOI: 10.1016/j.diii.2020.08.002.
[3]
Wang ZC. Promote new changes in otological imaging and enhance the value of diagnosis and treatment of otological diseases[J]. Chin J Med, 2022, 57(6): 581-583, 576. DOI: 10.3969/j.issn.1008-1070.2022.06.001.
[4]
Ma JM, Chen QH, Xian JF. High resolution multimodal MRI enables personalized diagnosis and treatment of orbital tumors and tumor-like lesions[J]. Chin J Radiol, 2021, 55(10): 1001-1003. DOI: 10.3760/cma.j.cn112149-20210819-00778.
[5]
Jiang H, Bai GH, Han QH, et al. Improved ability of demonstrating ocular masses on 3.0 T MR scanner using PROPELLER: a multi-center study[J]. Chin J Radiol, 2022, 56(9): 989-995. DOI: 10.3760/cma.j.cn112149-20220307-00207.
[6]
Li T, Xian JF. Promote investigation of multimodal magnetic resonance imaging in the application of head and neck[J]. Radiol Pract, 2016, 31(8): 678-680. DOI: 10.13609/j.cnki.1000-0313.2016.08.001.
[7]
Xian JF. Emphasis on the role of functional magnetic resonance imaging in the diagnosis and research of otolaryngologic diseases[J]. Chin Arch Otolaryngol Head Neck Surg, 2016, 23(4): 185-187. DOI: 10.16066/j.1672-7002.2016.04.001.
[8]
Baba A, Kurokawa R, Kurokawa M, et al. ADC for differentiation between posttreatment changes and recurrence in head and neck cancer: a systematic review and meta-analysis[J]. AJNR Am J Neuroradiol, 2022, 43(3): 442-447. DOI: 10.3174/ajnr.A7431.
[9]
Bos P, van der Hulst HJ, van den Brekel MWM, et al. Prognostic functional MR imaging parameters in head and neck squamous cell carcinoma: a systematic review[J/OL]. Eur J Radiol, 2021, 144: 109952 [2022-11-04]. https://pubmed.ncbi.nlm.nih.gov/34562743. DOI: 10.1016/j.ejrad.2021.109952.
[10]
Sims JR, Chen AM, Sun Z, et al. Role of structural, metabolic, and functional MRI in monitoring visual system impairment and recovery[J]. J Magn Reson Imaging, 2021, 54(6): 1706-1729. DOI: 10.1002/jmri.27367.
[11]
Li Z, Xian M, Guo J, et al. Dynamic contrast-enhanced MRI can quantitatively identify malignant transformation of sinonasal inverted papilloma[J/OL]. Br J Radiol, 2022, 95(1134): 20211374 [2022-11-04]. https://pubmed.ncbi.nlm.nih.gov/35234501. DOI: 10.1259/bjr.20211374.
[12]
Jiang H, Wang SJ, Li Z, et al. Improving diagnostic performance of differentiating ocular adnexal lymphoma and idiopathic orbital inflammation using intravoxel incoherent motion diffusion-weighted MRI[J/OL]. Eur J Radiol, 2020, 130: 109191 [2022-11-04]. https://pubmed.ncbi.nlm.nih.gov/32745898. DOI: 10.1016/j.ejrad.2020.109191.
[13]
Li HY, Sun J, Wang HH, et al. Evaluation of hemodynamic changes in nonarteritic anterior ischemic optic neuropathy using multimodality imaging[J]. Quant Imaging Med Surg, 2021, 11(5): 1932-1945. DOI: 10.21037/qims-20-699.
[14]
Zhang ZX, Li SJ, Wen BH, et al. The value of multi-echo Dixon technique and T2 mapping for evaluating early parotid gland changes in primary Sjögren's syndrome[J]. Chin J Radiol, 2021, 55(12): 1282-1286. DOI: 10.3760/cma.j.cn112149-20201228-01341.
[15]
Martucci A, Picchi E, Di Giuliano F, et al. Imaging biomarkers for Alzheimer's disease and glaucoma: current and future practices[J]. Curr Opin Pharmacol, 2022, 62: 137-144. DOI: 10.1016/j.coph.2021.12.003.
[16]
Wang CJ, Wang YT, Zhai FB, et al. The study of different kinds of primary glaucoma by diffusion tensor imaging[J]. Chin J Magn Reson Imaging, 2022, 13(1): 114-117. DOI: 10.12015/issn.1674-8034.2022.01.023.
[17]
Wang Q, Qu XX, Chen WW, et al. Altered coupling of cerebral blood flow and functional connectivity strength in visual and higher order cognitive cortices in primary open angle glaucoma[J]. J Cereb Blood Flow Metab, 2021, 41(4): 901-913. DOI: 10.1177/0271678X20935274.
[18]
Yang BB, Qu XX, Wang Q, et al. Magnetic resonance imaging findings of brain in patients with primary open-angle glaucoma[J]. Chin J Magn Reson Imaging, 2022, 13(11): 37-41. DOI: 10.12015/issn.1674-8034.2022.11.007.
[19]
Li T, Qu XX, Wang Q, et al. Diffusion kurtosis imaging study of cerebral cortex microstructure damage in patients with normal tension glaucoma[J]. Chin J Magn Reson Imaging, 2022, 13(11): 6-11. DOI: 10.12015/issn.1674-8034.2022.11.002.
[20]
Qu XX, Xian JF. Artificial intelligence promotes precision diagnosis and treatment of head and neck diseases[J]. Chin J Radiol, 2022, 56(2): 121-123. DOI: 10.3760/cma.j.cn112149-20211217-01115.
[21]
Liu J, Xu X, Yan J, et al. Diffusion-weighted MR imaging of the optic nerve can improve the detection of post-laminar optic nerve invasion from retinoblastoma[J/OL]. J Magn Reson Imaging, 2022 [2022-11-04]. https://pubmed.ncbi.nlm.nih.gov/36106682. DOI: 10.1002/jmri.28429.
[22]
Ren JL, Song QB, Yuan Y, et al. Value of MRI radiomics for predicting occult cervical lymph nodes metastases in early-stage oral tongue squamous cell carcinoma[J]. Chin J Radiol, 2022, 56(1): 30-35. DOI: 10.3760/cma.j.cn112149-20211010-00906.
[23]
Zhang XH, Zhang ZW, Lü FJ, et al. The study of high-resolution diffusion tensor imaging in thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imaging, 2021, 12(9): 11-14. DOI: 10.12015/issn.1674-8034.2021.09.003.
[24]
Gong ZB, Chen HH, Liu SF, et al. Research progress of magnetic resonance diffusion spectrum imaging in the nervous system[J]. Chin J Magn Reson Imaging, 2020, 11(9): 809-812, 816. DOI: 10.12015/issn.1674-8034.2020.09.020.
[25]
Li T, Xian JF. Orbital and craniocerebral magnetic resonance imaging promotes precise diagnosis and treatment of retinoblastoma: the interpretation of a consensus on imaging examination and diagnosis of retinoblastoma[J]. Chin J Magn Reson Imaging, 2021, 12(11): 74-79. DOI: 10.12015/issn.1674-8034.2021.11.016.
[26]
Li ZZ, Guo J, Xu XL, et al. MRI-based radiomics model can improve the predictive performance of postlaminar optic nerve invasion in retinoblastoma[J/OL]. Br J Radiol, 2022, 95(1130): 20211027 [2022-11-04]. https://pubmed.ncbi.nlm.nih.gov/34826253. DOI: 10.1259/bjr.20211027.
[27]
Chen J, Jiang LL, Liu DH, et al. The value of dynamic contrast enhanced-magnetic resonance imaging based on compressed sensing volumetric interpolated breath-hold examination in the differential diagnosis between benign and malignant thyroid nodules[J]. Chin J Magn Reson Imaging, 2022, 13(4): 38-42. DOI: 10.12015/issn.1674-8034.2022.04.007.
[28]
Yang Q, Zou LY, Liu Z, et al. Preliminary application of amide proton transfer-MRI in diagnosis of nasopharyngeal carcinomas[J]. Chin J Magn Reson Imaging, 2021, 12(9): 6-10. DOI: 10.12015/issn.1674-8034.2021.09.002.
[29]
He P, Huerman•Bahetibieke, Zhang MR, et al. Semiquantitative and quantitative analyses of dynamic contrast-enhanced magnetic resonance imaging in the differentiation between malignant and benign thyroid nodules[J]. Chin J Magn Reson Imaging, 2021, 12(7): 12-17. DOI: 10.12015/issn.1674-8034.2021.07.003.
[30]
Yu SH, Lin NE, Cheng YS, et al. Value of a nomogram model combined radiomics based on contrast enhanced MRI and clinical factors on preoperative prediction histological grade in sinonasal squamous cell carcinoma[J]. Chin J Radiol, 2022, 56(7): 751-757. DOI: 10.3760/cma.j.cn112149-20211007-00894.
[31]
Li DF, Wen WC, Li HB, et al. Clinical study of intravoxel incoherent motion diffusion-weighted imaging and T2 mapping in evaluating the activity of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imaging, 2021, 12(10): 66-69, 73. DOI: 10.12015/issn.1674-8034.2021.10.015.
[32]
Jiang WH, Hu H, Chen HH, et al. The value of quantitative parameters on magnetization transfer imaging of lacrimal glands in distinguishing the clinical activity of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imaging, 2022, 13(11): 17-21. DOI: 10.12015/issn.1674-8034.2022.11.004.
[33]
Jin Z, Zhang B, Zhang L, et al. Prediction of distant metastasis in nasopharyngeal carcinoma by interpretable machine learning model based on multiparametric MRI radiomics and clinical factors[J]. Chin J Magn Reson Imaging, 2022, 13(11): 22-29. DOI: 10.12015/issn.1674-8034.2022.11.005.
[34]
Wang X, Liang LK, Su XH, et al. Value of MRI multi-sequence model fusion radiomics in predicting the response to concurrent chemoradiotherapy in patients with locally advanced nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(6): 10-16. DOI: 10.12015/issn.1674-8034.2022.06.003.
[35]
Sun ZQ, Hu SD, Xue Q, et al. Nomogram for predicting the response to chemoradiotherapy in advanced nasopharyngeal carcinoma based on arterial spin-labeled perfusion parameters and clinicopathological features[J]. Chin J Radiol, 2022, 56(2): 156-162. DOI: 10.3760/cma.j.cn112149-20210411-00353.
[36]
Zhang B, Tian J, Dong D, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma[J]. Clin Cancer Res, 2017, 23(15): 4259-4269. DOI: 10.1158/1078-0432.CCR-16-2910.
[37]
Wang Z, Liu SL, Zhang SR, et al. Prediction of tumor cell proliferation activity in nasopharyngeal carcinoma by nomogram based on multiparametric MRI radiomics combined with clinic-radiological features[J]. Chin J Magn Reson Imaging, 2022, 13(11): 30-36, 41. DOI: 10.12015/issn.1674-8034.2022.11.006.
[38]
Chen SY, Yang Y, Qi SN, et al. Validation of nomogram-revised risk index and comparison with other models for extranodal nasal-type NK/T-cell lymphoma in the modern chemotherapy era: indication for prognostication and clinical decision-making[J]. Leukemia, 2021, 35(1): 130-142. DOI: 10.1038/s41375-020-0791-3.
[39]
Nishino M, Hatabu H, Hodi FS. Imaging of cancer immunotherapy: current approaches and future directions[J]. Radiology, 2019, 290(1): 9-22. DOI: 10.1148/radiol.2018181349.
[40]
Tao R, Fan L, Song YP, et al. Sintilimab for relapsed/refractory extranodal NK/T cell lymphoma: a multicenter, single-arm, phase 2 trial (ORIENT-4)[J/OL]. Signal Transduct Target Ther, 2021, 6(1): 365 [2022-11-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548511. DOI: 10.1038/s41392-021-00768-0.
[41]
Zormpas-Petridis K, Poon E, Clarke M, et al. Noninvasive MRI native T1 mapping detects response to MYCN-targeted therapies in the Th-MYCN model of neuroblastoma[J]. Cancer Res, 2020, 80(16): 3424-3435. DOI: 10.1158/0008-5472.CAN-20-0133.
[42]
Bagaev A, Kotlov N, Nomie K, et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy[J/OL]. Cancer Cell, 2021, 39(6): 845-865.e7 [2022-11-04]. https://pubmed.ncbi.nlm.nih.gov/34019806. DOI: 10.1016/j.ccell.2021.04.014.
[43]
Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nat Med, 2018, 24(5): 541-550. DOI: 10.1038/s41591-018-0014-x.
[44]
Cho J, Kim SJ, Park WY, et al. Immune subtyping of extranodal NK/T-cell lymphoma: a new biomarker and an immune shift during disease progression[J]. Mod Pathol, 2020, 33(4): 603-615. DOI: 10.1038/s41379-019-0392-8.
[45]
Song J, Kadaba P, Kravitz A, et al. Multiparametric MRI for early identification of therapeutic response in recurrent glioblastoma treated with immune checkpoint inhibitors[J]. Neuro Oncol, 2020, 22(11): 1658-1666. DOI: 10.1093/neuonc/noaa066.
[46]
Ge YX, Hu SD, Wang Z, et al. Feasibility and reproducibility of T2 mapping and DWI for identifying malignant lymph nodes in rectal cancer[J]. Eur Radiol, 2021, 31(5): 3347-3354. DOI: 10.1007/s00330-020-07359-7.
[47]
Xu JZ, Jiang XY, Devan SP, et al. MRI-cytometry: mapping nonparametric cell size distributions using diffusion MRI[J]. Magn Reson Med, 2021, 85(2): 748-761. DOI: 10.1002/mrm.28454.
[48]
Wang YG, Zhao T, Zhang XF, et al. Probe of the central mechanism of adult patients with amblyopia based on rs-fMRI technique[J]. Chin J Magn Reson Imaging, 2022, 13(11): 12-16, 29. DOI: 10.12015/issn.1674-8034.2022.11.003.

PREV
NEXT Diffusion kurtosis imaging study of cerebral cortex microstructure damage in patients with normal tension glaucoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn