Share this content in WeChat
Original Articles
Proton exchange rate quantification-based lesion detection in ischemic stroke using chemical exchange saturation transfer imaging
ZHAO Yingcheng  WANG Xiaoli  HE Xiaowei 

Cite this article as: Zhao YC, Wang XL, He XW. Proton exchange rate quantification-based lesion detection in ischemic stroke using chemical exchange saturation transfer imaging[J]. Chin J Magn Reson Imaging, 2022, 13(10): 157-163. DOI:10.12015/issn.1674-8034.2022.10.024.

[Abstract] Objective To evaluate the value of chemical exchange saturation transfer (CEST) MRI proton exchange rate in the detection of focal area of ischemic stroke by quantitative analysis.Materials and Methods The rat middle cerebral artery occlusion model was prepared by the suture method, and scanned on a Bruker 7 T animal MR scanner to obtain stroke rat images with different MRI modalities. The saturation pulse intensities were respectively 0.7, 1, and 2 μT to collect CEST images three times. In terms of post-processing, the linear relationship between the saturation pulse amplitude ω1, the exchange rate kex and the CEST signal was established based on the Bloch-McConnell equation, so as to pass the CEST under different B1. Signals were exchanged for rate quantification. According to this method, the CEST images were calculated pixel by pixel to obtain the corresponding exchange rate imaging. The independent sample t-test was used to compare the exchange rates of detected lesions and normal tissues between groups, and the contrast-to-noise ratio (CNR) was used to compare the exchange rates between groups. The CNR metric to quantify the contrast between exchange rate imaging and raw CEST imaging.Results Relative to the contralateral normal tissue, exchange rate imaging showed markedly low signal in the lesion area. Compared with transverse relaxation-weighted imaging (T2W) and diffusion-weighted imaging (DWI), for the short term after reperfusion, exchange rate imaging showed stronger contrast in the lesion area. The kex value in the lesion area detected by exchange rate imaging was statistically significant compared with the rest of the normal tissues (P<0.01). With a total of 6 groups of rat comparison experiments, all the exchange rate images showed higher CNR values compared to the original CEST images.Conclusions Proton exchange rate imaging can detect acidic lesions in tissues after ischemic stroke, and has potential as an endogenous quantitative imaging biomarker.
[Keywords] ischemic stroke;magnetic resonance imaging;chemical exchange saturation transfer;exchange rate;amide proton transfer;lesion detection

ZHAO Yingcheng1, 2   WANG Xiaoli3   HE Xiaowei1, 2*  

1 School of Information Sciences and Technology, Northwest University, Xi'an 710127, China

2 Xi'an Key Lab of Radiomics and Intelligent Perception, Northwest University, Xi'an 710127, China

3 Department of Medical Imaging, Weifang Medical University, Weifang 261053, China

He XW, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 61971350).
Received  2022-05-12
Accepted  2022-09-22
DOI: 10.12015/issn.1674-8034.2022.10.024
Cite this article as: Zhao YC, Wang XL, He XW. Proton exchange rate quantification-based lesion detection in ischemic stroke using chemical exchange saturation transfer imaging[J]. Chin J Magn Reson Imaging, 2022, 13(10): 157-163. DOI:10.12015/issn.1674-8034.2022.10.024.

Campbell BCV, de Silva DA, MacLeod MR, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1): 70. DOI: 10.1038/s41572-019-0118-8.
Fukuta T, Yanagida Y, Asai T, et al. Co-administration of liposomal fasudil and tissue plasminogen activator ameliorated ischemic brain damage in occlusion model rats prepared by photochemically induced thrombosis[J]. Biochem Biophys Res Commun, 2018, 495(1): 873-877. DOI: 10.1016/j.bbrc.2017.11.107.
Wahsner J, Gale EM, Rodríguez-Rodríguez A, et al. Chemistry of MRI contrast agents: current challenges and new frontiers[J]. Chem Rev, 2019, 119(2): 957-1057. DOI: 10.1021/acs.chemrev.8b00363.
Yang YG, Shen ZW, Wu RH, et al. Research of chemical exchange saturation transfer in brain[J]. Chin J Magn Reson Imaging, 2016, 7(4): 249-253. DOI: 10.12015/issn.1674-8034.2016.04.002.
Xu X, Sehgal AA, Yadav NN, et al. D-glucose weighted chemical exchange saturation transfer (glucoCEST)-based dynamic glucose enhanced (DGE) MRI at 3T: early experience in healthy volunteers and brain tumor patients[J]. Magn Reson Med, 2020, 84(1): 247-262. DOI: 10.1002/mrm.28124.
Kumar D, Nanga RPR, Thakuri D, et al. Recovery kinetics of creatine in mild plantar flexion exercise using 3D creatine CEST imaging at 7 Tesla[J]. Magn Reson Med, 2021, 85(2): 802-817. DOI: 10.1002/mrm.28463.
Chen L, Wei ZL, Chan KWY, et al. Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI[J]. Neuroimage, 2019, 188: 380-390. DOI: 10.1016/j.neuroimage.2018.12.018.
Meissner JE, Korzowski A, Regnery S, et al. Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T[J]. J Magn Reson Imaging, 2019, 50(4): 1268-1277. DOI: 10.1002/jmri.26702.
Foo LS, Larkin JR, Sutherland BA, et al. Study of common quantification methods of amide proton transfer magnetic resonance imaging for ischemic stroke detection[J]. Magn Reson Med, 2021, 85(4): 2188-2200. DOI: 10.1002/mrm.28565.
Sun PZ. Fast correction of B0 field inhomogeneity for pH-specific magnetization transfer and relaxation normalized amide proton transfer imaging of acute ischemic stroke without Z-spectrum[J]. Magn Reson Med, 2020, 83(5): 1688-1697. DOI: 10.1002/mrm.28040.
Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1): 79-87. DOI: 10.1006/jmre.1999.1956.
van Zijl PCM, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn't?[J]. Magn Reson Med, 2011, 65(4): 927-948. DOI: 10.1002/mrm.22761.
Yuwen Zhou I, Wang EF, Cheung JS, et al. Direct saturation-corrected chemical exchange saturation transfer MRI of glioma: simplified decoupling of amide proton transfer and nuclear overhauser effect contrasts[J]. Magn Reson Med, 2017, 78(6): 2307-2314. DOI: 10.1002/mrm.26959.
Paech D, Dreher C, Regnery S, et al. Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high-grade glioma patients[J]. Eur Radiol, 2019, 29(9): 4957-4967. DOI: 10.1007/s00330-019-06066-2.
Zhang XY, Zhai YT, Jin ZY, et al. Preliminary demonstration of in vivo quasi-steady-state CEST postprocessing-Correction of saturation time and relaxation delay for robust quantification of tumor MT and APT effects[J]. Magn Reson Med, 2021, 86(2): 943-953. DOI: 10.1002/mrm.28764.
Zhou Y, Bie C, van Zijl P, et al. The relayed nuclear Overhauser effect in magnetization transfer and chemical exchange saturation transfer MRI[J/OL]. NMR Biomed, 2022 [2022-05-11]. DOI: 10.1002/nbm.4778.
Jin T, Kim SG. Role of chemical exchange on the relayed nuclear Overhauser enhancement signal in saturation transfer MRI[J]. Magn Reson Med, 2022, 87(1): 365-376. DOI: 10.1002/mrm.28961.
Cui J, Afzal A, Zu ZL. Comparative evaluation of polynomial and Lorentzian lineshape-fitted amine CEST imaging in acute ischemic stroke[J]. Magn Reson Med, 2022, 87(2): 837-849. DOI: 10.1002/mrm.29030.
Dixon WT, Ren JM, Lubag AJ, et al. A concentration-independent method to measure exchange rates in PARACEST agents[J]. Magn Reson Med, 2010, 63(3): 625-632. DOI: 10.1002/mrm.22242.
Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91. DOI: 10.1161/01.str.20.1.84.
Woessner DE, Zhang SR, Merritt ME, et al. Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI[J]. Magn Reson Med, 2005, 53(4): 790-799. DOI: 10.1002/mrm.20408.
Zhu LH, Zhang ZP, Wang FN, et al. Diffusion kurtosis imaging of microstructural changes in brain tissue affected by acute ischemic stroke in different locations[J]. Neural Regen Res, 2019, 14(2): 272-279. DOI: 10.4103/1673-5374.244791.
Yoshimoto T, Inoue M, Yamagami H, et al. Use of diffusion-weighted imaging-Alberta stroke program early computed tomography score (DWI-ASPECTS) and ischemic core volume to determine the malignant profile in acute stroke[J/OL]. J Am Heart Assoc, 2019 [2022-05-11]. DOI: 10.1161/JAHA.119.012558.
Zimmermann F, Korzowski A, Breitling J, et al. A novel normalization for amide proton transfer CEST MRI to correct for fat signal-induced artifacts: application to human breast cancer imaging[J]. Magn Reson Med, 2020, 83(3): 920-934. DOI: 10.1002/mrm.27983.
Dou H, Zheng Y, Wang XM. The quantification methods of the confounding effects in chemical exchange saturation transfer[J]. Chin J Magn Reson Imaging, 2021, 12(5): 118-120, 124. DOI: 10.12015/issn.1674-8034.2021.05.029.
Zhou JY, Heo HY, Knutsson L, et al. APT-weighted MRI: Techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
Igarashi T, Kim H, Sun PZ. Detection of tissue pH with quantitative chemical exchange saturation transfer magnetic resonance imaging[J/OL]. NMR Biomed, 2022 [2022-05-11]. DOI: 10.1002/nbm.4711.
Kim H, Krishnamurthy LC, Sun PZ. Brain pH imaging and its applications[J]. Neuroscience, 2021, 474: 51-62. DOI: 10.1016/j.neuroscience.2021.01.026.
Zaiss M, Angelovski G, Demetriou E, et al. QUESP and QUEST revisited - fast and accurate quantitative CEST experiments[J]. Magn Reson Med, 2018, 79(3): 1708-1721. DOI: 10.1002/mrm.26813.
Zhou JY, Payen JF, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
Cai KJ, Haris M, Singh A, et al. Magnetic resonance imaging of glutamate[J]. Nat Med, 2012, 18(2): 302-306. DOI: 10.1038/nm.2615.
Msayib Y, Harston GWJ, Tee YK, et al. Quantitative CEST imaging of amide proton transfer in acute ischaemic stroke[J/OL]. Neuroimage Clin, 2019 [2022-05-11]. DOI: 10.1016/j.nicl.2019.101833.
Tain RW, Scotti AM, Cai KJ. Improving the detection specificity of endogenous MRI for reactive oxygen species (ROS)[J]. J Magn Reson Imaging, 2019, 50(2): 583-591. DOI: 10.1002/jmri.26629.
Mihailovic JM, Huang YG, Walsh JJ, et al. High-resolution pH imaging using ratiometric chemical exchange saturation transfer combined with biosensor imaging of redundant deviation in shifts featuring paramagnetic DOTA-tetraglycinate agents[J/OL]. NMR Biomed, 2022 [2022-05-11]. DOI: 10.1002/nbm.4658.
Karaszewski B, Wardlaw JM, Marshall I, et al. Measurement of brain temperature with magnetic resonance spectroscopy in acute ischemic stroke[J]. Ann Neurol, 2006, 60(4): 438-446. DOI: 10.1002/ana.20957.
Ye HQ, Shaghaghi M, Chen QL, et al. In vivo proton exchange rate (kex) MRI for the characterization of multiple sclerosis lesions in patients[J]. J Magn Reson Imaging, 2021, 53(2): 408-415. DOI: 10.1002/jmri.27363.
Liu XY, Wang BJ, Zhang J, et al. Principle of amide proton transfer imaging and its research progress in glioma[J]. Chin J Magn Reson Imaging, 2022, 13(2): 127-129. DOI: 10.12015/issn.1674-8034.2022.02.031.
Shaghaghi M, Chen WW, Scotti A, et al. In vivo quantification of proton exchange rate in healthy human brains with omega plot[J]. Quant Imaging Med Surg, 2019, 9(10): 1686-1696. DOI: 10.21037/qims.2019.08.06.

PREV Quantitative analysis of early changes in the myelin structure of rats with ischemic stroke using MRI signal intensity ratio and diffusion tensor imaging
NEXT Value of MUSE technique in improving diffusion tensor imaging quality of glioma

Tel & Fax: +8610-67113815    E-mail: