Share this content in WeChat
Clinical Articles
The value of monoexponentia, fractional order calculus models and 18F-FDG PET imaging in evaluating the proliferation status of lung adenocarcinoma
LUO Yu  MENG Nan  HUANG Zhun  WEI Wei  LI Ziqiang  FU Fangfang  YUAN Jianmin  WANG Zhe  WANG Meiyun 

Cite this article as: Luo Y, Meng N, Huang Z, et al. The value of monoexponentia, fractional order calculus models and 18F-FDG PET imaging in evaluating the proliferation status of lung adenocarcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(10): 121-126. DOI:10.12015/issn.1674-8034.2022.10.018.

[Abstract] Objective To explore the value of monoexponential, fractional order calculus (FROC) models based on diffusion weighted imaging (DWI) and 18F-fluorodeoxyglucose-positron emission tomography (18F-FDG PET) in assessing the proliferation status of lung adenocarcinoma.Materials and Methods A total of 64 patients with lung adenocarcinoma confirmed by pathology in our hospital were included. The expression of Ki-67 in lung cancer tissues was detected by immunohistochemistry and divided into the high Ki-67 group (>25%) and the low Ki-67 group (≤25%). Before treatment, all patients underwent a dedicated thoracic 18F-FDG PET/MR examination. The DWI was scanned with 10 b-values (0-1000 s/mm2). The apparent diffusion coefficient (ADC), a microstructural quantity (μ), diffusion coefficient (D), fractional order parameter (β) and maximum standardized uptake value (SUVmax) were compared between the two groups. The independent predictors of Ki-67 proliferative status were analyzed by multivariate logistic regression, receiver operating characteristic (ROC) curve was used to evaluate the discriminant performance, and the correlation between each parameter and Ki-67 was analyzed.Results The ADC, D, and β values in the low Ki-67 group were significantly higher than in the high Ki-67 group (P<0.05), and the μ and SUVmax values in the high Ki-67 group were significantly higher than in the low Ki-67 group (P<0.05). The area under the curve (AUC) of parameters D and SUVmax were 0.873 and 0.727, respectively, and multivariate logistic regression showed that parameters D (OR: 0.421, 95% CI: 0.245-0.723, P=0.002) and SUVmax (OR: 1.022, 95% CI: 1.002-1.042, P=0.031) were independent risk factors for high Ki-67 expression. ADC and D values were negatively correlated with Ki-67 (r=-0.361, r=-0.420), and μ and SUVmax values were positively correlated with Ki-67 (r=0.369, r=0.527).Conclusions Monoexponential, FROC models and 18F-FDG PET are effective methods to evaluate the proliferation status of lung adenocarcinoma, and the D value of FROC model shows the highest diagnostic performance. FROC model provides a new perspective for exploring the information of tumor tissue microenvironment, and has great potential in non-invasive evaluation of lung adenocarcinoma proliferation, and its clinical application has broad prospects.
[Keywords] lung adenocarcinoma;Ki-67;monoexponential;fractional order calculus model;18F-fluorodeoxyglucose-positron emission tomography;magnetic resonance imaging;differential diagnosis

LUO Yu1, 2   MENG Nan1, 2   HUANG Zhun3   WEI Wei2   LI Ziqiang4   FU Fangfang2   YUAN Jianmin5   WANG Zhe5   WANG Meiyun2*  

1 Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou 450000, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450000, China

3 Department of Medical Imaging, Henan University People's Hospital & Henan Provincial People's Hospital, Zhengzhou 450000, China

4 Department of Medical Imaging, Xinxiang Medical University & Henan Provincial People's Hospital, Zhengzhou 450000, China

5 Central Research Institute, Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201807, China

Wang MY, E-mail:

Conflicts of interest   None.

Received  2022-04-11
Accepted  2022-10-09
DOI: 10.12015/issn.1674-8034.2022.10.018
Cite this article as: Luo Y, Meng N, Huang Z, et al. The value of monoexponentia, fractional order calculus models and 18F-FDG PET imaging in evaluating the proliferation status of lung adenocarcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(10): 121-126.DOI:10.12015/issn.1674-8034.2022.10.018

Succony L, Rassl DM, Barker AP, et al. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies[J/OL]. Cancer Treat Rev, 2021, 99 [2022-04-10]. DOI: 10.1016/j.ctrv.2021.102237.
Huang Z, Li X, Wang Z, et al. Application of Simultaneous (18) F-FDG PET With Monoexponential, Biexponential, and Stretched Exponential Model-Based Diffusion-Weighted MR Imaging in Assessing the Proliferation Status of Lung Adenocarcinoma[J/OL]. J Magn Reson Imaging, 2021, 56(1) [2022-04-10]. DOI: 10.1002/jmri.28010.
Lin L, Cheng J, Tang D, et al. The associations among quantitative spectral CT parameters, Ki-67 expression levels and EGFR mutation status in NSCLC[J/OL]. Sci Rep, 2020, 10(1) [2022-04-10]. DOI: 10.1038/s41598-020-60445-0.
Liu P, Li H, Liao C, Tang Y, et al. Identification of key genes and biological pathways in Chinese lung cancer population using bioinformatics analysis[J/OL]. PeerJ, 2022, 10 [2022-04-10]. DOI: 10.7717/peerj.12731.
Wei DM, Chen WJ, Meng RM, et al. Augmented expression of Ki-67 is correlated with clinicopathological characteristics and prognosis for lung cancer patients: an up-dated systematic review and meta-analysis with 108 studies and 14,732 patients[J/OL]. Respir Res, 2018, 19(1) [2022-04-10]. DOI: 10.1186/s12931-018-0843-7.
Shen G, Lan Y, Zhang K, et al. Comparison of 18F-FDG PET/CT and DWI for detection of mediastinal nodal metastasis in non-small cell lung cancer: A meta-analysis[J/OL]. Plos One, 2017, 12(3) [2022-04-10]. DOI: 10.1371/journal.pone.0173104.
Juan MW, Yu J, Peng GX, et al. Correlation between DCE-MRI radiomics features and Ki-67 expression in invasive breast cancer[J]. Oncol Lett, 2018, 16(4): 5084-5090. DOI: 10.3892/ol.2018.9271.
Karaman A, Durur-Subasi I, Alper F, et al. Correlation of diffusion MRI with the Ki-67 index in non-small cell lung cancer[J]. Radiol Oncol, 2015, 49(3): 250-255. DOI: 10.1515/raon-2015-0032.
Jiang JX, Zhao JL, Zhang Q, et al. Endometrial carcinoma: diffusion-weighted imaging diagnostic accuracy and correlation with Ki-67 expression[J/OL]. Clin Radiol, 2018, 73(4) [2022-04-10]. DOI: 10.1016/j.crad.2017.11.011.
Li HM, Liu J, Qiang JW, et al. Endometrial Stromal Sarcoma of the Uterus: Magnetic Resonance Imaging Findings Including Apparent Diffusion Coefficient Value and Its Correlation With Ki-67 Expression[J]. Int J Gynecol Cancer, 2017, 27(9): 1877-1887. DOI: 10.1097/IGC.0000000000001114.
Chen J, Guo Y, Guo Y, et al. Preoperative assessment of microvascular invasion of hepatocellular carcinoma using non-Gaussian diffusion-weighted imaging with a fractional order calculus model: A pilot study[J/OL]. Magn Reson Imaging, 2021 [2022-04-10]. DOI: 10.1016/j.mri.2021.09.003.
Sui Y, Wang H, Liu G, et al. Differentiation of Low- and High-Grade Pediatric Brain Tumors with High b-Value Diffusion-weighted MR Imaging and a Fractional Order Calculus Model[J]. Radiology, 2015, 277(2): 489-96. DOI: 10.1148/radiol.2015142156.
Chen W, Zhu LN, Dai YM, et al. Differentiation of salivary gland tumor using diffusion-weighted imaging with a fractional order calculus model[J/OL]. Br J Radiol, 2020, 93(1113) [2022-04-10]. DOI: 10.1259/bjr.20200052.
Li Z, Dan G, Tammana V, et al. Predicting the aggressiveness of peripheral zone prostate cancer using a fractional order calculus diffusion model[J/OL]. Eur J Radiol, 2021, 143 [2022-04-10]. DOI: 10.1016/j.ejrad.2021.109913.
Sheng R, Zhang Y, Sun W, et al. Staging Chronic Hepatitis B Related Liver Fibrosis with a Fractional Order Calculus Diffusion Model[J/OL]. Acad Radiol, 2021 [2022-04-10]. DOI: 10.1016/j.acra.2021.07.005.
Feng C, Wang Y, Dan G, et al. Evaluation of a fractional-order calculus diffusion model and bi-parametric VI-RADS for staging and grading bladder urothelial carcinoma[J]. Eur Radiol, 2022, 32(2): 890-900. DOI: 10.1007/s00330-021-08203-2.
Luo Y, Jiang H, Meng N, et al. A comparison study of monoexponential and fractional order calculus diffusion models and 18F-FDG PET in differentiating benign and malignant solitary pulmonary lesions and their pathological types[J/OL]. Front Oncol, 2022, 12 [2022-04-10]. DOI: 10.3389/fonc.2022.907860.
Nguyen XC, Lee WW, Chung JH, et al. FDG uptake, glucose transporter type 1, and Ki-67 expressions in non-small-cell lung cancer: correlations and prognostic values[J]. Eur J Radiol, 2007, 62(2): 214-219. DOI: 10.1016/j.ejrad.2006.12.008.
Zhang A, Wang X, Fan C, et al. The Role of Ki67 in Evaluating Neoadjuvant Endocrine Therapy of Hormone Receptor-Positive Breast Cancer[J/OL]. Front Endocrinol (Lausanne), 2021, 12 [2022-04-10]. DOI: 10.3389/fendo.2021.687244.
Aung TN, Acs B, Warrell J, et al. A new tool for technical standardization of the Ki67 immunohistochemical assay[J]. Mod Pathol, 2021, 34(7): 1261-1270. DOI: 10.1038/s41379-021-00745-6.
Ren H, Ma J, Wang J. Correlation between apparent diffusion coefficient and Ki-67 in different pathological types of lung cancer[J]. Transl Cancer Res, 2021, 10(12): 5364-5371. DOI: 10.21037/tcr-21-2515.
Surov A, Caysa H, Wienke A, et al. Correlation Between Different ADC Fractions, Cell Count, Ki-67, Total Nucleic Areas and Average Nucleic Areas in Meningothelial Meningiomas[J]. Anticancer Res, 2015, 35(12): 6841-6846.
Zhang XY, Sun YS, Tang L, et al. Correlation of diffusion-weighted imaging data with apoptotic and proliferation indexes in CT26 colorectal tumor homografts in balb/c mouse[J]. J Magn Reson Imaging, 2011, 33(5): 1171-1176. DOI: 10.1002/jmri.22558.
Mori N, Ota H, Mugikura S, et al. Luminal-type breast cancer: correlation of apparent diffusion coefficients with the Ki-67 labeling index[J]. Radiology, 2015, 274(1): 66-73. DOI: 10.1148/radiol.14140283.
Sun M, Cheng J, Zhang Y, et al. Application of DWIBS in malignant lymphoma: correlation between ADC values and Ki-67 index[J]. Eur Radiol, 2018, 28(4): 1701-1708. DOI: 10.1007/s00330-017-5135-y.
Seo N, Chung YE, Park YN, et al. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(7): 2812-2822. DOI: 10.1007/s00330-017-5292-z.
Zhang Q, Ouyang H, Ye F, et al. Multiple mathematical models of diffusion-weighted imaging for endometrial cancer characterization: Correlation with prognosis-related risk factors[J/OL]. Eur J Radiol, 2020, 130 [2022-04-10]. DOI: 10.1016/j.ejrad.2020.109102.
Jerome NP, Vidić I, Egnell L, et al. Understanding diffusion-weighted MRI analysis: Repeatability and performance of diffusion models in a benign breast lesion cohort[J/OL]. NMR Biomed, 2021, 34(7) [2022-04-10]. DOI: 10.1002/nbm.4508.
Usuda K, Ishikawa M, Iwai S, et al. Pulmonary Nodule and Mass: Superiority of MRI of Diffusion-Weighted Imaging and T2-Weighted Imaging to FDG-PET/CT[J/OL]. Cancers (Basel), 2021, 13(20) [2022-04-10]. DOI: 10.3390/cancers13205166.
Yuan Z, Niu XM, Liu XM, et al. Use of diffusion-weighted magnetic resonance imaging (DW-MRI) to predict early response to anti-tumor therapy in advanced non-small cell lung cancer (NSCLC): a comparison of intravoxel incoherent motion-derived parameters and apparent diffusion coefficient[J]. Transl Lung Cancer Res, 2021, 10(8): 3671-3681. DOI: 10.21037/tlcr-21-610.
Usuda K, Funasaki A, Sekimura A, et al. FDG-PET/CT and diffusion-weighted imaging for resected lung cancer: correlation of maximum standardized uptake value and apparent diffusion coefficient value with prognostic factors[J/OL]. Med Oncol, 2018, 35(5) [2022-04-10]. DOI: 10.1007/s12032-018-1128-1.
Tang L, Sui Y, Zhong Z, et al. Non-Gaussian diffusion imaging with a fractional order calculus model to predict response of gastrointestinal stromal tumor to second-line sunitinib therapy[J]. Magn Reson Med, 2018, 79(3): 1399-1406. DOI: 10.1002/mrm.26798.
Liu GZ. Studies of Anomalous Diffusion in Pediatric Brain Tumor Using Fractional Order Calculus modelling[D]. Shanghai: Naval Medical University, 2012.
Karam MB, Doroudinia A, Behzadi B, et al. Correlation of quantified metabolic activity in nonsmall cell lung cancer with tumor size and tumor pathological characteristics[J/OL]. Medicine (Baltimore), 2018, 97(32) [2022-04-10]. DOI: 10.1097/MD.0000000000011628.
Park S, Lee E, Rhee S, et al. Correlation between Semi-Quantitative (18)F-FDG PET/CT Parameters and Ki-67 Expression in Small Cell Lung Cancer[J]. Nucl Med Mol Imaging, 2016, 50(1): 24-30. DOI: 10.1007/s13139-015-0363-z.
Yang ML, You JH. Progress in the clinical application and correlation between glucose transporter-1 and 18F-FDG PET/CT imaging for non-small cell lung cancer[J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2021, 38(2): 399-404. DOI: 10.7507/1001-5515.202010004.
Wang Y, Qiao X, Yang X, et al. The role of a drug-loaded poly (lactic co-glycolic acid) (PLGA) copolymer stent in the treatment of ovarian cancer[J]. Cancer Biol Med, 2020, 17(1): 237-250. DOI: 10.20892/j.issn.2095-3941.2019.0169.
Grant L, Banerji S, Murphy L, et al. Androgen Receptor and Ki67 Expression and Survival Outcomes in Non-small Cell Lung Cancer[J]. Horm Cancer, 2018, 9(4): 288-294. DOI: 10.1007/s12672-018-0336-7.

PREV Application value of cardiac cine with compressed sensing real-time imaging and retrospective fully automated non-rigid motion correction for assessment of right ventricular function and strain in patients with pulmonary arterial hypertension
NEXT Feasibility study of cardiac magnetic resonance four-dimensional flow imaging in evaluating left ventricular diastolic function in patients with hypertrophic cardiomyopathy

Tel & Fax: +8610-67113815    E-mail: