Share this content in WeChat
Clinical Articles
Diagnostic value of machine learning based on multi-parameters of MRI radiomics to predict cervical lymph node status of papillary thyroid carcinoma
MA Weiqiong  CHEN Kangyin  YANG Ning  JIANG Guihua  LAN Bowen  ZENG Yujing 

Cite this article as: Ma WQ, Chen KY, Yang N, et al. Diagnostic value of machine learning based on multi-parameters of MRI radiomics to predict cervical lymph node status of papillary thyroid carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(10): 108-113. DOI:10.12015/issn.1674-8034.2022.10.016.

[Abstract] Objective To explore the diagnostic value of machine learning based on multi-parameters of MRI radiomics to predict cervical lymph node status in patients with papillary thyroid carcinoma (PTC).Materials and Methods The imaging and clinical data of 182 patients with PTC diagnosed by operation and pathology were retrospectively analyzed, according to the result of surgical pathology, the patients were divided into lymph node metastasis group (91 cases) and no lymph node metastasis group (91 cases). Radiomics analysis was performed on multi-parameters of MRI [T1WI, T2WI, fat-saturated T2WI, enhanced T1WI, fat-saturated and enhanced T1WI, diffusion weighted imaging (DWI)] to acquire texture features and histogram features. Based on the above features, a support vector machine (SVM) model was constructed to classify cervical metastatic and non-metastatic lymph nodes.Results The diagnostic performance of machine learning models which were based multi-parameters of MRI radiomics was superior,with a classification accuracy of 79.61%, a sensitivity of 75.00%, a specificity of 83.00%, and an area under curve (AUC) value of 0.911.Conclusions The machine learning method based on multi-parameters of MRI radiomics can effectively predict cervical lymph node status in patients with PTC.
[Keywords] thyroid carcinoma;papillary thyroid carcinoma;cervical lymph node status;multi-parameters;magnetic resonance imaging;radiomics;histogram features;support vector machine

MA Weiqiong1   CHEN Kangyin1   YANG Ning2   JIANG Guihua2   LAN Bowen1   ZENG Yujing1*  

1 Department of Radiology, Huizhou Central People's Hospital, Huizhou 516000, China

2 Department of imaging, Guangdong Second Provincial General Hospital, Guangzhou 510000, China

Zeng YJ, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS  ANKNOWLEDGMENTS Guangdong Medical Research Foundation B2019201 Huizhou Science and Technology Bureau 2018Y025 Key Support Project of Huizhou Central People's Hospital in 2018 (No.〔2018〕118)
Received  2022-06-09
Accepted  2022-09-30
DOI: 10.12015/issn.1674-8034.2022.10.016
Cite this article as: Ma WQ, Chen KY, Yang N, et al. Diagnostic value of machine learning based on multi-parameters of MRI radiomics to predict cervical lymph node status of papillary thyroid carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(10): 108-113. DOI:10.12015/issn.1674-8034.2022.10.016.

Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133. DOI: 10.1089/thy.2015.0020.
McNamara WF, Wang LY, Palmer FL, et al. Pattern of neck recurrence after lateral neck dissection for cervical metastases in papillary thyroid cancer[J]. Surgery, 2016, 159(6): 1565-1571. DOI: 10.1016/j.surg.2016.02.005.
Feng JW, Qin AC, Ye J, et al. Predictive factors for lateral lymph node metastasis and skip metastasis in papillary thyroid carcinoma[J]. Endocr Pathol, 2020, 31(1): 67-76. DOI: 10.1007/s12022-019-09599-w.
Asimakopoulos P, Shaha AR, Nixon IJ, et al. Management of the neck in well-differentiated thyroid cancer[J/OL]. Curr Oncol Rep, 2020 [2022-06-08]. DOI: 10.1007/s11912-020-00997-6.
Ito Y, Miyauchi A, Kihara M, et al. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation[J]. Thyroid, 2014, 24(1): 27-34. DOI: 10.1089/thy.2013.0367.
Zhang Y, Wang K, Liu J, et al. Surgical management of parapharyngeal lymph node metastases from thyroid carcinoma with transcervical approach[J]. Surgery, 2022, 171(5): 1233-1239. DOI: 10.1016/j.surg.2021.08.054.
Alabousi M, Alabousi A, Adham S, et al. Diagnostic test accuracy of ultrasonography vs computed tomography for papillary thyroid cancer cervical lymph node metastasis: a systematic review and meta-analysis[J]. JAMA Otolaryngol Head Neck Surg, 2022, 148(2): 107-118. DOI: 10.1001/jamaoto.2021.3387.
Zhao HQ, Li HH. Meta-analysis of ultrasound for cervical lymph nodes in papillary thyroid cancer: diagnosis of central and lateral compartment nodal metastases[J]. Eur J Radiol, 2019, 112: 14-21. DOI: 10.1016/j.ejrad.2019.01.006.
Kim SK, Woo JW, Park I, et al. Computed tomography-detected central lymph node metastasis in ultrasonography node-negative papillary thyroid carcinoma: is it really significant?[J]. Ann Surg Oncol, 2017, 24(2): 442-449. DOI: 10.1245/s10434-016-5552-1.
Lu GL, Chen L. Cervical lymph node metastases in papillary thyroid cancer: Preoperative staging with ultrasound and/or computed tomography[J/OL]. Medicine, 2022, 101(9) [2022-06-08]. DOI: 10.1097/MD.0000000000028909.
Harries V, McGill M, Wang LY, et al. Is a prophylactic central compartment neck dissection required in papillary thyroid carcinoma patients with clinically involved lateral compartment lymph nodes?[J]. Ann Surg Oncol, 2021, 28(1): 512-518. DOI: 10.1245/s10434-020-08861-4.
Lin P, Yao ZN, Sun Y, et al. Deciphering novel biomarkers of lymph node metastasis of thyroid papillary microcarcinoma using proteomic analysis of ultrasound-guided fine-needle aspiration biopsy samples[J/OL]. J Proteomics, 2019, 204 [2022-06-08]. DOI: 10.1016/j.jprot.2019.103414.
Zhang LY, Wang YM, Peng ZY, et al. The progress of multimodal imaging combination and subregion based radiomics research of cancers[J]. Int J Biol Sci, 2022, 18(8): 3458-3469. DOI: 10.7150/ijbs.71046.
Zhang H, Zhang HH, Shu Z, et al. The diagnostic value of MRI T2WI image texture analysis for predicting cervical lymph node metastasis of papillary thyroid carcinoma[J]. J China Clin Med Imaging, 2020, 31(8): 568-571, 587. DOI: 10.12117/jccmi.2020.08.010.
Jin D, Ni XQ, Zhang XD, et al. Multiphase dual-energy spectral CT-based deep learning method for the noninvasive prediction of head and neck lymph nodes metastasis in patients with papillary thyroid cancer[J/OL]. Front Oncol, 2022, 12 [2022-06-08]. DOI: 10.3389/fonc.2022.869895.
Zhu YQ, Ji H, Zhu YF, et al. Predictive value of preoperative MRI-based nomogram for axillary lymph node metastasis in breast cancer[J]. Chin J Magn Reson Imaging, 2022, 13(5): 52-58. DOI: 10.12015/issn.1674-8034.2022.05.010.
Liu TT, Zhou SC, Yu JH, et al. Prediction of lymph node metastasis in patients with papillary thyroid carcinoma: a radiomics method based on preoperative ultrasound images[J/OL]. Technol Cancer Res Treat, 2019, 18 [2022-06-08]. DOI: 10.1177/1533033819831713.
Zhou SC, Liu TT, Zhou J, et al. An ultrasound radiomics nomogram for preoperative prediction of central neck lymph node metastasis in papillary thyroid carcinoma[J/OL]. Front Oncol, 2020, 10 [2022-06-08]. DOI: 10.3389/fonc.2020.01591.
Becker AS, Ghafoor S, Marcon M, et al. MRI texture features may predict differentiation and nodal stage of cervical cancer: a pilot study[J/OL]. Acta Radiol Open, 2017 [2022-06-08]. DOI: 10.1177/2058460117729574.
Renkonen S, Lindén R, Bäck L, et al. Accuracy of preoperative MRI to assess lateral neck metastases in papillary thyroid carcinoma[J]. Eur Arch Otorhinolaryngol, 2017, 274(11): 3977-3983. DOI: 10.1007/s00405-017-4728-z.
Yeh MW, Bauer AJ, Bernet VA, et al. American Thyroid Association statement on preoperative imaging for thyroid cancer surgery[J]. Thyroid, 2015, 25(1): 3-14. DOI: 10.1089/thy.2014.0096.
Chen X. Imaging diagnosis and fine-needle aspiration cytology for differentiated thyroid carcinoma[J]. Chin J Oper Proced Gen Surg Electron Ed, 2016, 10(5): 368-372
Park H, Kim KA, Jung JH, et al. MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer[J]. Eur Radiol, 2020, 30(8): 4201-4211. DOI: 10.1007/s00330-020-06835-4.
Xu H, Liu JK, Huang Y, et al. MRI-based radiomics as response predictor to radiochemotherapy for metastatic cervical lymph node in nasopharyngeal carcinoma[J/OL]. Br J Radiol, 2021 [2022-06-08]. DOI: 10.1259/bjr.20201212.
Horvat N, Veeraraghavan H, Khan M, et al. MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy[J]. Radiology, 2018, 287(3): 833-843. DOI: 10.1148/radiol.2018172300.
Zhou XL, Lai H, Wen XL, et al. Value of T2WI-FS based radiomics features in the diagnosis of cervical cancer metastasis and lymph vascular space invasion[J]. Chin J Magn Reson Imaging, 2021, 12(7): 69-71, 76. DOI: 10.12015/issn.1674-8034.2021.07.014.
Xia XD, Duan CZ, Wang GX, et al. Prediction of axillary lymph node metastasis of breast cancer with MRI texture analysis[J]. Chin J Med Imaging Technol, 2021, 37(4): 531-536. DOI: 10.13929/j.issn.1003-3289.2021.04.013.
Tan HN, Gan FW, Wu YP, et al. Preoperative prediction of axillary lymph node metastasis in breast carcinoma using radiomics features based on the fat-suppressed T2 sequence[J]. Acad Radiol, 2020, 27(9): 1217-1225. DOI: 10.1016/j.acra.2019.11.004.
Yu YY, Zhang R, Dong RT, et al. Feasibility of an ADC-based radiomics model for predicting pelvic lymph node metastases in patients with stage IB-IIA cervical squamous cell carcinoma[J/OL]. Br J Radiol, 2019 [2022-06-08]. DOI: 10.1259/bjr.20180986.
Li Y, Yang ZL, Lv WZ, et al. Non-mass enhancements on DCE-MRI: development and validation of a radiomics-based signature for breast cancer diagnoses[J/OL]. Front Oncol, 2021 [2022-06-08]. DOI: 10.3389/fonc.2021.738330.

PREV Measurement of the diameter of retrobulbar optic nerve sheath in Chinese healthy adults by MRI and its related factors
NEXT Application value of cardiac cine with compressed sensing real-time imaging and retrospective fully automated non-rigid motion correction for assessment of right ventricular function and strain in patients with pulmonary arterial hypertension

Tel & Fax: +8610-67113815    E-mail: