Share this content in WeChat
Clinical Articles
Study on topology properties of white matter structure network in patients with amyotrophic lateral sclerosis
WANG Qiannan  ZHANG Jingna  HU Jun  WANG Li  QIAO Liang  ZHANG Ye  SANG Linqiong  LI Pengyue  OU Mingwen  QIU Mingguo 

Cite this article as: Wabg QN, Zhang JN, Hu J, et al. Study on topology properties of white matter structure network in patients with amyotrophic lateral sclerosis[J]. Chin J Magn Reson Imaging, 2022, 13(10): 86-90, 97. DOI:10.12015/issn.1674-8034.2022.10.012.

[Abstract] Objective To investigate the relationship between the integrity of brain structural network and motor and cognitive function in patients with amyotrophic lateral sclerosis (ALS).Materials and Methods Twenty-five ALS patients (ALS group) and twenty-six healthy subjects (healthy control group) matched in gender and age were prospectively collected pertaining to clinical data, neuropsychological scales and magnetic resonance diffusion tensor imaging (DTI) data. The whole brain structure network was constructed, and based on the graph theory, the differences between the ALS group and the healthy control group were compared. Pearson correlation analysis was further used to observe the changes of the structure network parameters and the correlation between the cognitive and motor function test scales.Results The local efficiency of white matter structure network in patients with ALS increased, and the Characteristic path length increased significantly (P<0.05). The node efficiency of frontal lobe, anterior cingulate gyrus, thalamus and other brain regions increased (P<0.05), the betweenness centrality of right anterior central gyrus, left wedge lobe and left posterior central gyrus decreased (P<0.05), but the betweenness centrality of left superior frontal gyrus and left inferior frontal gyrus increased (P<0.05). There was a negative correlation between the betweenness centrality of the left inferior frontal gyrus pars operculariscan and the ALSFAR-R score (r=-0.514, P=0.012).Conclusions The abnormal changes of the structure network of motor brain and extramotor brain in ALS patients may provide imaging basis for the diagnosis and prognosis evaluation of brain injury.
[Keywords] amyotrophic lateral sclerosis;diffusion tensor imaging;graph theory;magnetic resonance imaging;white matter structure network;topology properties

WANG Qiannan1   ZHANG Jingna1   HU Jun2   WANG Li1   QIAO Liang1   ZHANG Ye1   SANG Linqiong1   LI Pengyue1   OU Mingwen1   QIU Mingguo1*  

1 Department of Medical Imaging, College of Biomedical Engineering, Army medical university, Chongqing 400038, China

2 Department of Neurology, the First Affiliated Hospital of Army medical university, Chongqing Southwest Hospital, Chongqing 400038, China

Qiu MG, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS General Program of Chongqing Natural Science Foundation (No. cstc2020jcyj-msxmX0311); Open project of the Key Laboratory of Extreme Environmental Medicine of the Ministry of Education (No. PR-KL2020GY002).
Received  2022-06-30
Accepted  2022-09-30
DOI: 10.12015/issn.1674-8034.2022.10.012
Cite this article as: Wabg QN, Zhang JN, Hu J, et al. Study on topology properties of white matter structure network in patients with amyotrophic lateral sclerosis[J]. Chin J Magn Reson Imaging, 2022, 13(10): 86-90, 97. DOI:10.12015/issn.1674-8034.2022.10.012.

Sever B, Ciftci H, DeMirci H, et al. Comprehensive research on past and future therapeutic strategies devoted to treatment of amyotrophic lateral sclerosis[J/OL]. Int J Mol Sci, 2022, 23(5) [2022-06-19]. DOI: 10.3390/ijms23052400.
Li WB, Wei QQ, Hou YB, et al. Disruption of the white matter structural network and its correlation with baseline progression rate in patients with sporadic amyotrophic lateral sclerosis[J/OL]. Transl Neurodegener, 2021 [2022-06-19]. DOI: 10.1186/s40035-021-00255-0.
Spinelli EG, Riva N, Rancoita PMV, et al. Structural MRI outcomes and predictors of disease progression in amyotrophic lateral sclerosis[J/OL]. Neuroimage Clin, 2020, 27 [2022-06-19]. DOI: 10.1016/j.nicl.2020.102315.
Behler A, Müller HP, Ludolph AC, et al. A multivariate Bayesian classification algorithm for cerebral stage prediction by diffusion tensor imaging in amyotrophic lateral sclerosis[J/OL]. Neuroimage Clin, 2022 [2022-06-21]. DOI: 10.1016/j.nicl.2022.103094.
Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems[J]. Nat Rev Neurosci, 2009, 10(3): 186-198. DOI: 10.1038/nrn2575.
Fortanier E, Grapperon AM, le Troter A, et al. Structural connectivity alterations in amyotrophic lateral sclerosis: a graph theory based imaging study[J/OL]. Front Neurosci, 2019 [2012-06-19]. DOI: 10.3389/fnins.2019.01044.
Qiu T, Zhang YC, Tang X, et al. Precentral degeneration and cerebellar compensation in amyotrophic lateral sclerosis: a multimodal MRI analysis[J]. Hum Brain Mapp, 2019, 40(12): 3464-3474. DOI: 10.1002/hbm.24609.
Reyes-Leiva D, Dols-Icardo O, Sirisi S, et al. Pathophysiological underpinnings of extra-motor neurodegeneration in amyotrophic lateral sclerosis: new insights from biomarker studies[J/OL]. Front Neurol, 2021 [2022-06-19]. DOI: 10.3389/fneur.2021.750543.
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis[J/OL]. Neurobiol Dis, 2020, 145 [2022-06-19]. DOI: 10.1016/j.nbd.2020.105063.
Pratt AJ, Getzoff ED, Perry JJ. Amyotrophic lateral sclerosis: update and new developments[J]. Degener Neurol Neuromuscul Dis, 2012, 2012(2): 1-14. DOI: 10.2147/dnnd.s19803.
Cui ZX, Zhong SY, Xu PF, et al. PANDA: a pipeline toolbox for analyzing brain diffusion images[J/OL]. Front Hum Neurosci, 2013 [2022-06-19]. DOI: 10.3389/fnhum.2013.00042.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. NeuroImage, 2002, 15(1): 273-289. DOI: 10.1006/nimg.2001.0978.
Mori S, van Zijl PCM. Fiber tracking: principles and strategies-a technical review[J]. NMR Biomed, 2002, 15(7/8): 468-480. DOI: 10.1002/nbm.781.
Tuladhar AM, van Dijk E, Zwiers MP, et al. Structural network connectivity and cognition in cerebral small vessel disease[J]. Hum Brain Mapp, 2016, 37(1): 300-310. DOI: 10.1002/hbm.23032.
Samu D, Seth AK, Nowotny T. Influence of wiring cost on the large-scale architecture of human cortical connectivity[J/OL]. PLoS Comput Biol, 2014 [2022-06-19]. DOI: 10:e1003557. 10.1371/journal.pcbi.1003557.
Zhang Y, Cao YJ, Xie YJ, et al. Altered brain structural topological properties in type 2 diabetes mellitus patients without complications[J]. J Diabetes, 2019, 11(2): 129-138. DOI: 10.1111/1753-0407.12826.
Renga V. Brain connectivity and network analysis in amyotrophic lateral sclerosis[J/OL]. Neurol Res Int, 2022, [2022-06-19]. DOI: 10.1155/2022/1838682.
Basaia S, Agosta F, Cividini C, et al. Structural and functional brain connectome in motor neuron diseases: a multicenter MRI study[J/OL]. Neurology, 2020, 95(18) [2022-06-19]. DOI: 10.1212/WNL.0000000000010731.
Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: anatomy, function, and dysfunction[J]. Neurosci Biobehav Rev, 2018, 92: 104-127. DOI: 10.1016/j.neubiorev.2018.05.008.
Basaia S, Filippi M, Spinelli EG, et al. White matter microstructure breakdown in the motor neuron disease spectrum: recent advances using diffusion magnetic resonance imaging[J/OL]. Front Neurol, 2019, 10 [2022-06-19]. DOI: 10.3389/fneur.2019.00193.
Katzeff JS, Bright F, Phan K, et al. Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis[J]. Brain, 2022, 145(5): 1598-1609. DOI: 10.1093/brain/awac077.
Parent M, Parent A. Relationship between axonal collateralization and neuronal degeneration in basal Ganglia[J]. J Neural Transm Suppl, 2006(70): 85-88. DOI: 10.1007/978-3-211-45295-0_14.
Bereman MS, Kirkwood KI, Sabaretnam T, et al. Metabolite profiling reveals predictive biomarkers and the absence of β-methyl amino-l-alanine in plasma from individuals diagnosed with amyotrophic lateral sclerosis[J]. J Proteome Res, 2020, 19(8): 3276-3285. DOI: 10.1021/acs.jproteome.0c00216.
Marcuzzo S, Bonanno S, Figini M, et al. A longitudinal DTI and histological study of the spinal cord reveals early pathological alterations in G93A-SOD1 mouse model of amyotrophic lateral sclerosis[J]. Exp Neurol, 2017, 293: 43-52. DOI: 10.1016/j.expneurol.2017.03.018.
Li WN, Zhang JQ, Zhou CY, et al. Abnormal functional connectivity density in amyotrophic lateral sclerosis[J/OL]. Front Aging Neurosci, 2018 [2022-06-19]. DOI: 10.3389/fnagi.2018.00215.
Grèzes J, Decety J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis[J]. Hum Brain Mapp, 2001, 12(1): 1-19. DOI: 10.1002/1097-0193(200101)12:1<1: aid-hbm10>;2-v.
van der Burgh HK, Westeneng HJ, Walhout R, et al. Multimodal longitudinal study of structural brain involvement in amyotrophic lateral sclerosis[J]. Neurology, 2020 [2022-06-19]. DOI: 10.1212/WNL.0000000000009498.
Steinbach R, Prell T, Gaur N, et al. Patterns of grey and white matter changes differ between bulbar and limb onset amyotrophic lateral sclerosis[J/OL]. Neuroimage Clin, 2021 [2022-06-19]. DOI: 10.1016/j.nicl.2021.102674.
Hagoort P. Nodes and networks in the neural architecture for language: Broca's region and beyond[J]. Curr Opin Neurobiol, 2014, 28: 136-141. DOI: 10.1016/j.conb.2014.07.013.
Rae CL, Hughes LE, Anderson MC, et al. The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity[J]. J Neurosci, 2015, 35(2): 786-794. DOI: 10.1523/JNEUROSCI.3093-13.2015.
McKenna MC, Corcia P, Couratier P, et al. Frontotemporal pathology in motor neuron disease phenotypes: insights from neuroimaging[J/OL]. Front Neurol, 2021 [2022-08-16]. DOI: 10.3389/fneur.2021.723450.

PREV Comparative analysis of white matter fiber changes of chronic stable schizophrenia treated with risperidone and clozapine
NEXT High-resolution MRI feature of transient ischemic attack patients and its correlation with ABCD3 score

Tel & Fax: +8610-67113815    E-mail: