Share this content in WeChat
Specialist Forums
Opportunities and challenges of cardiovascular magnetic resonance imaging: Achievements and prospects over the past decade in China
FENG Changjing  YANG Qi 

Cite this article as: Feng CJ, Yang Q. Opportunities and challenges of cardiovascular magnetic resonance imaging: Achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imaging, 2022, 13(10): 66-70, 78. DOI:10.12015/issn.1674-8034.2022.10.009.

[Abstract] In the past decade, cardiovascular magnetic resonance (CMR) imaging, as a gold standard for noninvasive assessment of cardiac structure and function, has played an important role in the clinical diagnosis and treatment of cardiovascular diseases in China. With the advent of new techniques such astissue characterization imaging, feature tracking technology, diffusion-weighted imaging, radiomics and artificial intelligence, CMR provides new opportunities for precise diagnosis and treatment of cardiovascular system diseases. Several domestic hospitals have used CMR to accurately evaluate ischemic heart disease, non-ischemic heart disease, macrovascular disease, etc., and have obtained a series of research results. We believe that CMR will achieve greater research results in tissue characterization imaging, radiomics and artificial intelligence, molecular imagingas well as early diagnosis, risk stratification, and prognostic evaluation of the disease in the future. We summarized the clinical and scientific research progress in the field of CMR in China in the past ten years, and looks forward to the future development direction in this paper, in order to provide relevant reference for the research of CMR technology and clinical research.
[Keywords] ischemic heart disease;non-ischemic heart disease;cardiomyopathy;coronary atherosclerosis;macrovascular disease;cardiovascular magnetic resonance imaging;magnetic resonance angiography;late gadolinium enhancement;cardiac magnetic resonance feature tracking;diffusion-weighted imaging;radiomics;artificial intelligence;prognosis;efficacy evaluation

FENG Changjing   YANG Qi*  

Department of Interventional Radiology Imaging Center, Chaoyang Hospital, Capital Medical University, Beijing 100020, China

Yang Q, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Fundation for Distinguished Young Scholars (No. 82025018).
Received  2022-10-12
Accepted  2022-10-14
DOI: 10.12015/issn.1674-8034.2022.10.009
Cite this article as: Feng CJ, Yang Q. Opportunities and challenges of cardiovascular magnetic resonance imaging: Achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imaging, 2022, 13(10): 66-70, 78. DOI:10.12015/issn.1674-8034.2022.10.009.

Zhao SH. Cardiac MRI techniques: new challenges[J]. Chin J Med Imaging Technol, 2017, 33(8): 1125-1128. DOI: 10.13929/j.1003-3289.201707120.
Wan JY, Zhao SH. Clinical significance and prognostic value of late gadolinium enhancement on cardiac MRI[J]. Chin J Med Imaging Technol, 2012, 28(8): 1600-1603. DOI: 10.13929/j.1003-3289.2012.08.018.
Lu MJ, Zhao SH, Yin G, et al. T1 mapping for detection of left ventricular myocardial fibrosis in hypertrophic cardiomyopathy: a preliminary study[J/OL]. Eur J Radiol, 2013 [2022-10-11]. DOI: 10.1016/j.ejrad.2012.12.014.
Cheng ZP, Lu MJ, Yin G, et al. Native T1 mapping for the diagnosis of cardiac amyloidosis: a pilot research[J]. Chin J Radiol, 2016(12): 935-939. DOI: 10.3760/cma.j.issn.1005-1201.2016.12.006.
Wang SL, Hu HJ, Lu MJ, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in hypertension and associated with left ventricular remodeling[J]. Eur Radiol, 2017, 27(11): 4620-4630. DOI: 10.1007/s00330-017-4841-9.
Guo Q, Wu LM, Wang Z, et al. Early detection of silent myocardial impairment in drug-naive patients with new-onset systemic lupus erythematosus: a three-center prospective study[J]. Arthritis Rheumatol, 2018, 70(12): 2014-2024. DOI: 10.1002/art.40671.
Xu J, Zhuang BY, Sirajuddin A, et al. MRI T1 mapping in hypertrophic cardiomyopathy: evaluation in patients without late gadolinium enhancement and hemodynamic obstruction[J]. Radiology, 2020, 294(2): 275-286. DOI: 10.1148/radiol.2019190651.
Huang L, Zhao PJ, Tang DZ, et al. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging[J]. JACC Cardiovasc Imaging, 2020, 13(11): 2330-2339. DOI: 10.1016/j.jcmg.2020.05.004.
Yang ZX, Zhou N, Tang DZ, et al. Early detection of subclinical myocardial dysfunction assessed by cardiac MR feature tracking in hypertensive heart disease patients[J]. Chin J Radiol, 2021, 55(3): 257-263. DOI: 10.3760/cma.j.cn112149-20200311-00375.
Liu H, Yang D, Luo Y, et al. Reference values for left ventricular myocardial strains measured by feature-tracking magnetic resonance imaging in Chinese Han population[J]. J Sichuan Univ Med Sci Ed, 2016, 47(4): 599-604. DOI: 10.13464/j.scuxbyxb.2016.04.030.
Li ZW, Cong LF, Ma XH, et al. A preliminary study of left ventricular function assessement in patients with atrial fibrillation by MR feature tracking technique[J]. Chin J Radiol, 2017, 51(9): 682-688. DOI: 10.3760/cma.j.issn.1005?1201.2017.09.011.
Zhang C, Zhao L, Ma XH, et al. Value of cardiac MR in evaluating myocardial infarction with chronic mitral insufficiency[J]. Chin J Radiol, 2019, 53(12): 1101-1106. DOI: 10.3760/cma.j.issn.1005?1201.2019.12.015.
Chen XY, Li L, Song YY, et al. Cardiovascular magnetic resonance feature tracking in the quantitative assessment of early left atrial dysfunction in hypertensive patients[J]. Chin J Magn Reson Imaging, 2020, 11(4): 281-285. DOI: 10.12015/issn.1674-8034.2020.04.008.
Chen Y, Qian W, Liu W, et al. Feasibility of single-shot compressed sensing cine imaging for analysis of left ventricular function and strain in cardiac MRI[J/OL]. Clin Radiol, 2021 [2022-10-11]. DOI: 10.1016/j.crad.2020.12.024.
Liu W, Zhu Y, Feng C, et al. Early cardiac involvement detected by cardiac magnetic resonance feature tracking in idiopathic inflammatory myopathy with preserved ejection fraction[J/OL]. Int J Cardiovasc Imaging, 2022 [2022-10-11]. DOI: 10.1007/s10554-022-02715-8.
Li ZW, Yuan SS, Huang L, et al. A preliminary study of magnetic resonance myocardial multi-b values diffusion weighted imaging[J]. Radiol Pract, 2013, 28(3): 337-340. DOI: 10.13609/j.cnki.1000-0313.2013.03.015.
Wu LM, Chen BH, Yao QY, et al. Quantitative diffusion-weighted magnetic resonance imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy compared with T1 mapping[J]. Int J Cardiovasc Imaging, 2016, 32(8): 1289-1297. DOI: 10.1007/s10554-016-0909-x.
Wu R, An DA, Shi RY, et al. Myocardial fibrosis evaluated by diffusion-weighted imaging and its relationship to 3D contractile function in patients with hypertrophic cardiomyopathy[J]. J Magn Reson Imaging, 2018, 48(4): 1139-1146. DOI: 10.1002/jmri.26016.
An DA, Shi RY, Wu R, et al. Different myocardial perfusion status in acute myocardial infarction and infarct-like myocarditis: a novel intravoxel incoherent motion diffusion-weighted imaging based MRI study[J]. Acad Radiol, 2020, 27(8): 1093-1102. DOI: 10.1016/j.acra.2019.10.019.
Zhao SH, Tian J. Artificial intelligence, the inevitable path of breakthrough development of cardiovascular imaging[J]. Chin J Radiol, 2019, 53(4): 243-245. DOI: 10.3760/cma.j.issn.1005?1201.2019.04.002.
Cheng SN, Fang MJ, Cui C, et al. LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results[J]. Eur Radiol, 2018, 28(11): 4615-4624. DOI: 10.1007/s00330-018-5391-5.
Wang J, Yang FY, Liu WT, et al. Radiomic analysis of native T1 mapping images discriminates between MYH7 and MYBPC3-related hypertrophic cardiomyopathy[J]. J Magn Reson Imaging, 2020, 52(6): 1714-1721. DOI: 10.1002/jmri.27209.
Guo JJ, Lu HF, She JQ, et al. Application of 1.5T cardiac Cine MR image based on deep learning in left ventricular function evaluation of patients with hypertrophic cardiomyopathy and dilated cardiomyopathy[J]. Chin J Clin Med, 2021, 28(4): 675-681. DOI: 10.12025/j.issn.1008-6358.2021.20210203.
Wu X, Tang L, Deng Q, et al. The feasibility study of MRI texture analysis in predicting delayed enhancement status in cardiac amyloidosis[J]. Chin J Magn Reson Imaging, 2021, 12(12): 6-11. DOI: 10.12015/issn.1674-8034.2021.12.002.
Yang Q, Li KC, Liu X, et al. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center[J]. J Am Coll Cardiol, 2009, 54(1): 69-76. DOI: 10.1016/j.jacc.2009.03.016.
Yun H, Jin H, Yang S, et al. Coronary artery angiography and myocardial viability imaging: a 3.0-T contrast-enhanced magnetic resonance coronary artery angiography with Gd-BOPTA[J]. Int J Cardiovasc Imaging, 2014, 30(1): 99-108. DOI: 10.1007/s10554-013-0297-4.
He Y, Pang JN, Dai QY, et al. Diagnostic performance of self-navigated whole-heart contrast-enhanced coronary 3-T MR angiography[J]. Radiology, 2016, 281(2): 401-408. DOI: 10.1148/radiol.2016152514.
Liu W, Xie YB, Wang C, et al. Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery specimens[J/OL]. J Cardiovasc Magn Reson, 2018 [2022-10-11]. DOI: 10.1186/s12968-018-0447-x.
Lu HF, Zhao SH, Tian D, et al. Clinical application of non-contrast-enhanced Dixon water-fat separation compressed SENSE whole-heart coronary MR angiography at 3.0 T with and without nitroglycerin[J]. J Magn Reson Imaging, 2022, 55(2): 579-591. DOI: 10.1002/jmri.27829.
Li XL, Zhi XH, Yin XF, et al. Clinical application of cardiac magnetic resonance in ischemic cardiomyopath[J]. China J Mod Med, 2019, 29(18): 104-107. DOI: 10.3969/j.issn.1005-8982.2019.18.021.
Wang QL, Wang F, Zhuge Y. Value of cardiac magnetic resonance in quantitative evaluation of ischemic mitral regurgitation and myocardial infarction area in patients with ischemic cardiomyopathy[J]. J Clin Exp Med, 2021, 20(24): 2682-2686. DOI: 10.3969/j.issn.1671-4695.2021.24.030.
Yang LP, Cao SD, Liu W, et al. Cardiac magnetic resonance feature tracking: a novel method to assess left ventricular three-dimensional strain mechanics after chronic myocardial infarction[J]. Acad Radiol, 2021, 28(5): 619-627. DOI: 10.1016/j.acra.2020.03.013.
Lu MJ, Zhao SH, Jiang SL, et al. Fat deposition in dilated cardiomyopathy assessed by CMR[J]. JACC Cardiovasc Imaging, 2013, 6(8): 889-898. DOI: 10.1016/j.jcmg.2013.04.010.
Yan CW, Zhao SH, Ling J, et al. Cardiovascular magnetic resonance characteristics in children with hypertrophic cardiomyopathy[J]. Circ Heart Fail, 2013, 6(5): 1013-1020. DOI: 10.1161/CIRCHEARTFAILURE.113.000414.
Lu M, Du H, Gao Z, et al. Predictors of outcome after alcohol septal ablation for hypertrophic obstructive cardiomyopathy: an echocardiography and cardiovascular magnetic resonance imaging study[J/OL]. Circ Cardiovasc Interv, 2016 [2022-10-11]. DOI: 10.1161/circinterventions.115.002675.
An SY, Fan CM, Yan LR, et al. Comparison of long-term outcome between apical and asymmetric septal hypertrophic cardiomyopathy[J]. Cardiology, 2017, 136(2): 108-114. DOI: 10.1159/000448239.
Song YY, Lu MJ, Li L, et al. Comparison on CMR characteristics and clinical prognosis between hypertrophic cardiomyopathy patients with and without left ventricular apical aneurysms[J]. Chin J Cardiol, 2019, 47(3): 204-208. DOI: 10.3760/cma.j.issn.0253-3758.2019.03.005.
Zhou HY, Li L, Liu ZY, et al. Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images[J]. Eur Radiol, 2021, 31(6): 3931-3940. DOI: 10.1007/s00330-020-07454-9.
Zhong Y, Wang G, Dai X. Evaluation of left ventricular strain and its diagnostic value in dilated cardiomyopathy by cardiovascular magnetic resonance feature tracking technology[J]. Chin J Magn Reson Imaging, 2021, 12(7): 6-11. DOI: 10.12015/issn.1674-8034.2021.07.002.
Yang XY, Wu J, Zhu LN, et al. Application of MR myocardial strain technique in the diagnosis and differential diagnosis of hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(2): 10-15, 21. DOI: 10.12015/issn.1674-8034.2022.02.003.
Wan K, Sun JY, Yang D, et al. Left ventricular myocardial deformation on cine MR images: relationship to severity of disease and prognosis in light-chain amyloidosis[J]. Radiology, 2018, 288(1): 73-80. DOI: 10.1148/radiol.2018172435.
Yu LY, Sun JH, Sun JY, et al. Early detection of myocardial involvement by T1 mapping of cardiac MRI in idiopathic inflammatory myopathy[J]. J Magn Reson Imaging, 2018, 48(2): 415-422. DOI: 10.1002/jmri.25945.
Feng CJ, Liu WY, Sun XX, et al. Myocardial involvement characteristics by cardiac MR imaging in patients with polymyositis and dermatomyositis[J]. Rheumatology (Oxford), 2022, 61(2): 572-580. DOI: 10.1093/rheumatology/keab271.
Peng G, Sun XW, Zhu XH, et al. Pulmonary arterial dimensions and right ventricular function by cardiac MRI[J]. Chin J Radiol, 2012(5): 391-395. DOI: 10.3760/cma.j.issn.1005-1201.2012.05.002.
Guo XJ, Liu M, Ma ZH, et al. Flow characteristics of the proximal pulmonary arteries and vena cava in patients with chronic thromboembolic pulmonary hypertension: correlation between 3.0 T phase-contrast MRI and right heart catheterization[J]. Diagn Interv Radiol, 2014, 20(5): 414-420. DOI: 10.5152/dir.2014.13501.
Li W, Yang T, Zhang Y, et al. Prognostic value of right ventricular ejection/filling parameters in IPAH using cardiac magnetic resonance: a prospective pilot study[J]. Respirology, 2017, 22(1): 172-178. DOI: 10.1111/resp.12861.
Chen YY, Yun H, Jin H, et al. Association of native T1 times with biventricular function and hemodynamics in precapillary pulmonary hypertension[J]. Int J Cardiovasc Imaging, 2017, 33(8): 1179-1189. DOI: 10.1007/s10554-017-1095-1.
Wang J, Zhao H, Wang Y, et al. Native T1 and T2 mapping by cardiovascular magnetic resonance imaging in pressure overloaded left and right heart diseases[J]. J Thorac Dis, 2018, 10(5): 2968-2975. DOI: 10.21037/jtd.2018.04.141.
Liang Y, Hu CF, Cheng SQ, et al. Diagnostic value of cardiac magnetic resonance to left-to-right shunt congenital heart disease complicated by pulmonary arterial hypertension and reviewing of right ventricular function[J]. Chin J Evid Based Cardiovasc Med, 2022, 14(1): 79-83, 86. DOI: 10.3969/j.issn.1674-4055.2022.01.18.

PREV Opportunities and challenges of pulmonary magnetic resonance imaging: Achievements and prospects over the past decade in China
NEXT Opportunities and challenges of liver cancer imaging: Achievements and prospects over the past decade in China

Tel & Fax: +8610-67113815    E-mail: