Share this content in WeChat
Specialist Forums
Opportunities and challenges of non-contrast-enhanced magnetic resonance imaging: Achievements and prospects over the past decade in China
WANG Feng  CAO Dairong 

Cite this article as: Wang F, Cao DR. Opportunities and challenges of non-contrast-enhanced magnetic resonance imaging: Achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imaging, 2022, 13(10): 46-52, 60. DOI:10.12015/issn.1674-8034.2022.10.006.

[Abstract] Over the past decade, with the development of magnetic resonance software and hardware, non-contrast-enhanced magnetic resonance imaging sequences have also been continuously developed and refined. Due to the advantages of non-invasiveness, non-radiation, and no need to inject contrast agents, this technology has gained widespread attention and promotion. The combination with the MRI acceleration technology further shortens the scan time and relieves the suffering of intolerant patients. Non-contrast-enhanced magnetic resonance imaging has become a common method for evaluating vascular problems today. This paper reviews the basic principles, advantages and disadvantages, clinical applications and latest progress of non-contrast-enhanced magnetic resonance imaging sequences from the two entry points of bright blood technology and black blood technology.Based on the current shortcomings, the simultaneous reconstruction of multiple contrast images in a single scan and the combination of 3D black blood sequence with electrocardiogram gating and respiratory gating will be a major research direction in the future. Multi site and even whole body non-contrast-enhanced magnetic resonance angiography combined scanning will also become a trend.
[Keywords] non-contrast-enhanced magnetic resonance imaging;bright blood technique;black blood technique;magnetic resonance imaging

WANG Feng1   CAO Dairong1, 2, 3*  

1 Department of Radiology, the First Affiliated Hospital of Fujian Medical University, Key Clinical Specialty in Fujian Province, Fuzhou 350005, China

2 Fujian Key Laboratory of Precision Medicine for Cancer, Fuzhou 350005, China

3 Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, Fuzhou 350005, China

Cao DR, E-mail:

Conflicts of interest   None.

Received  2022-09-01
Accepted  2022-10-14
DOI: 10.12015/issn.1674-8034.2022.10.006
Cite this article as: Wang F, Cao DR. Opportunities and challenges of non-contrast-enhanced magnetic resonance imaging: Achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imaging, 2022, 13(10): 46-52, 60. DOI:10.12015/issn.1674-8034.2022.10.006.

Quality Control and Safety Management Committee of Chinese Society of Radiology of Chinese Medical Association Chinese expert consensus of gadolinium contrast agent use in patients with renal disease[J]. Chin J Radiol, 2022, 56(3): 221-230. DOI: 10.3760/cma.j.cn112149-20210330-00294.
Wheaton AJ, Miyazaki M. Non-contrast enhanced MR angiography: physical principles[J]. J Magn Reson Imaging, 2012, 36(2): 286-304. DOI: 10.1002/jmri.23641.
Xu JL, Shi DP. Noncontrast-enhanced MR angiography: technological development and application[J]. Int J Med Radiol, 2015, 38(4): 351-356.
MR Group of Chinese Society of Radiology of Chinese Medical Association. Expert consensus on techniques and application of intracranial MR vessel wall imaging in China[J]. Chin J Radiol, 2019, 53(12): 1045-1059. DOI: 10.3760/cma.j.issn.1005-1201.2019.12.006.
Liu C, Song Y. Progress of magnetic resonance vessel wall imaging in the evaluation of vulnerability and treatment efficacy of intracranial atherosclerosis plaque[J]. Chin J Magn Reson Imaging, 2022, 13(3): 118-121. DOI: 10.12015/issn.1674-8034.2022.03.029.
Cai Y, Chen S, Zhao XH, et al. Technique and clinical application progresses of craniocervical artery three-dimensional magnetic resonance vessel wall imaging[J]. Chin J Med Imaging Technol, 2016, 32(12): 1938-1942. DOI: 10.13929/j.1003-3289.2016.12.036.
Zhang X, Cao YZ, Mu XH, et al. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography[J]. Eur Radiol, 2020, 30(6): 3059-3065. DOI: 10.1007/s00330-020-06682-3.
Ding J, Duan Y, Zhuo Z, et al. Acceleration of brain TOF-MRA with compressed sensitivity encoding: a multicenter clinical study[J]. AJNR Am J Neuroradiol, 2021, 42(7): 1208-1215. DOI: 10.3174/ajnr.A7091.
Li L, Zhou ZC, Yuan C, et al. Imaging lenticulostriate arteries at 3 tesla using optimized flow-sensitive black-blood technique[J]. Chin J Magn Reson, 2016, 33(4): 528-538. DOI: 10.11938/cjmr20160402.
Yang M, Fan WL, Yu JM, et al. Nonenhanced electrocardiogram-gated quiescent-interval single-shot MR angiography of the lower extremities: comparison with CT angiography[J]. Chin J Radiol, 2019, 53(6): 475-479. DOI: 10.3760/cma.j.issn.1005-1201.2019.06.007.
Klasen J, Blondin D, Schmitt P, et al. Nonenhanced ECG-gated quiescent-interval single-shot MRA (QISS-MRA) of the lower extremities: comparison with contrast-enhanced MRA[J]. Clin Radiol, 2012, 67(5): 441-446. DOI: 10.1016/j.crad.2011.10.014.
Kecskemeti S, Johnson K, Wu YJ, et al. High resolution three-dimensional cine phase contrast MRI of small intracranial aneurysms using a stack of stars k-space trajectory[J]. J Magn Reson Imaging, 2012, 35(3): 518-527. DOI: 10.1002/jmri.23501.
Long J, Sun DS, Zhou X, et al. A mathematical model for predicting intracranial pressure based on noninvasively acquired PC-MRI parameters in communicating hydrocephalus[J]. J Clin Monit Comput, 2021, 35(6): 1325-1332. DOI: 10.1007/s10877-020-00598-5.
Zhang JM, Chen J, Cheong B, et al. High frame rate cardiac cine MRI for the evaluation of diastolic function and its direct correlation with echocardiography[J]. J Magn Reson Imaging, 2019, 50(5): 1571-1582. DOI: 10.1002/jmri.26791.
Bai XY, Sui BB. Advances in intracranial hemodynamic assessment based on four dimensional flow MRI[J]. Chin J Radiol, 2021, 55(4): 448-451. DOI: 10.3760/cma.j.cn112149-202000501-00641.
Sekine T, Takagi R, Amano Y, et al. 4D flow MR imaging of ophthalmic artery flow in patients with internal carotid artery Stenosis[J]. Magn Reson Med Sci, 2018, 17(1): 13-20. DOI: 10.2463/
Zhang L, Wu T. The value of non-contrast enhanced MRA for diabetic foot arterial Stenosis at 3.0T MR[J]. J Clin Radiol, 2018, 37(11): 1888-1891. DOI: 10.13437/j.cnki.jcr.2018.11.029.
Schubert T, Takes M, Aschwanden M, et al. Non-enhanced, ECG-gated MR angiography of the pedal vasculature: comparison with contrast-enhanced MR angiography and digital subtraction angiography in peripheral arterial occlusive disease[J]. Eur Radiol, 2016, 26(8): 2705-2713. DOI: 10.1007/s00330-015-4068-6.
Cao DR, Zhang YY, Deng CS, et al. The repeatability of non-contrast enhanced renal MR angiography using time spatial labeling inversion pulse[J]. J Clin Radiol, 2015, 34(7): 1101-1105. DOI: 10.13437/j.cnki.jcr.2015.07.020.
Cao DR, Huang HJ, Zhang YY, et al. Diagnostic value of time-spatial labeling inversion pulse(Time-SLIP) unenhanced MR angiography in renal artery[J]. Chin J Magn Reson Imaging, 2018, 9(8): 600-606. DOI: 10.12015/issn.1674-8034.2018.08.008.
Meng XY, Tang H, Wang QX, et al. Non-contrast-enhanced MR angiography using spatial labeling with multiple inversion pulses sequence imaging in pulmonary artery: a feasibility study[J]. Chin J Magn Reson Imaging, 2014, 5(5): 343-347. DOI: 10.3969/j.issn.1674-8034.2014.05.006.
Wu MH, Xu JL, Shi DP, et al. Evaluations of non-contrast enhanced MR venography with inflow inversion recovery sequence in diagnosing Budd-Chiari syndrome[J]. Clin Imaging, 2014, 38(5): 627-632. DOI: 10.1016/j.clinimag.2014.06.006.
di Leo G, Fisci E, Secchi F, et al. Diagnostic accuracy of magnetic resonance angiography for detection of coronary artery disease: a systematic review and meta-analysis[J]. Eur Radiol, 2016, 26(10): 3706-3718. DOI: 10.1007/s00330-015-4134-0.
Lin L, Wang L, Zhang XN, et al. A clinical strategy to improve the diagnostic accuracy of 1.5-T non-contrast MR coronary angiography for detection of coronary artery disease: combination of whole-heart and volume-targeted imaging[J]. Eur Radiol, 2021, 31(4): 1894-1904. DOI: 10.1007/s00330-020-07135-7.
Iyama Y, Nakaura T, Nagayama Y, et al. Single-breath-hold whole-heart unenhanced coronary MRA using multi-shot gradient echo EPI at 3T: comparison with free-breathing turbo-field-echo coronary MRA on healthy volunteers[J]. Magn Reson Med Sci, 2018, 17(2): 161-167. DOI: 10.2463/
MR Application Committee of China Association of Medical Equipment. Expert consensus on clinical application of coronary MR angiography (first edition)[J]. Chin J Radiol, 2021, 55(9): 895-902. DOI: 10.3760/cma.j.cn112149-20210511-00468.
Liu W, Yu W. Research progress in the evaluation of coronary atherosclerosis plaque by magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2017, 8(4): 312-316. DOI: 10.12015/issn.1674-8034.2017.04.014.
Dong L, Li B, Wang ZH, et al. Feasibility study of rapid three dimensional MR angiography in visualization of carotid atherosclerotic plaque[J]. Chin J Radiol, 2017, 51(4): 299-303. DOI: 10.3760/cma.j.issn.1005-1201.2017.04.013.
Li LQ, Miller KL, Jezzard P. DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging[J]. MagnReson Med, 2012, 68(5):1423-1438. DOI: 10.1002/mrm.24142.
Wang JN, Helle M, Zhou ZC, et al. Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI[J]. MagnReson Med, 2016, 75(2): 831-838. DOI: 10.1002/mrm.25667.
Zhang L, Zhang N, Wu J, et al. High resolution simultaneous imaging of intracranial and extracranial arterial wall with improved cerebrospinal fluid suppression[J]. MagnReson Imaging, 2017, 44: 65-71. DOI: 10.1016/j.mri.2017.08.004.
Zhou ZC, Li R, Zhao XH, et al. Evaluation of 3D multi-contrast joint intra- and extracranial vessel wall cardiovascular magnetic resonance[J/OL]. Journal of Cardiovascular Magnetic Resonance, 2015, 17[2022-08-31]. DOI: 10.1186/s12968-015-0143-z.
Fan ZY, Yu W, Xie YB, et al. Multi-contrast atherosclerosis characterization (MATCH) of carotid plaque with a single 5-min scan: technical development and clinical feasibility[J/OL]. J CardiovascMagnReson, 2014, 16[2022-08-31]. DOI: 10.1186/s12968-014-0053-5.
Yang LX, Yu W, Fan ZY, et al. Role of MR multi-contrast atherosclerosis characterization sequence in assessment of carotid atherosclerotic plaques[J]. Chin J Geriatr Heart Brain Vessel Dis, 2015, 17(11): 1129-1132.
Xie YB, Kim YJ, Pang JN, et al. Coronary atherosclerosis T1-weighed characterization with integrated anatomical reference: comparison with high-risk plaque features detected by invasive coronary imaging[J]. JACC Cardiovasc Imaging, 2017, 10(6): 637-648. DOI: 10.1016/j.jcmg.2016.06.014.
Sato S, Matsumoto H, Li DB, et al. Coronary high-intensity plaques at T1-weighted MRI in stable coronary artery disease: comparison with near-infrared spectroscopy intravascular US[J]. Radiology, 2022, 302(3): 557-565. DOI: 10.1148/radiol.211463.

PREV Opportunities and challenges of diffusion spectrum magnetic resonance imaging: Achievements and prospects over the past decade in China
NEXT Opportunities and challenges of cerebrovascular imaging: Achievements and prospects over the past decade in China

Tel & Fax: +8610-67113815    E-mail: