Share:
Share this content in WeChat
X
Specialist Forums
Opportunities and challenges of functional magnetic resonance imaging for human brain research: Achievements and prospects over the past decade in China
XIA Mingrui  HE Yong 

Cite this article as: Xia MR, He Y. Opportunities and challenges of functional magnetic resonance imaging for human brain research: Achievements and prospects of China in the past ten years[J]. Chin J Magn Reson Imaging, 2022, 13(10): 23-36,65. DOI:10.12015/issn.1674-8034.2022.10.004.


[Abstract] Due to the advantages of non-invasiveness, balanced spatial and temporal resolution, high repeatability, and whole-brain imaging, functional magnetic resonance imaging (fMRI) technology provides a promising tool for the exploration of the neurobiological mechanisms of brain cognition, brain development, and brain aging, and also exhibits great clinical value for the investigation of the pathology and clinical assessment of brain disorders. In the last decade, the Chinese government has funded a large number of research projects on fMRI brain imaging and has achieved a series of original achievements and breakthroughs in neuroscience, neuroimaging, psychiatry, and other disciplines. Future research directions worthy of attention include quality control and harmonization of multi-center imaging big data, the acquisition of high-spatial-temporal resolution data using high-field-strength scanners, the implementation of clinical applications such as diagnosis and treatment evaluation, and the industrialization of brain science. We reviewed the achievements made by domestic scholars in the field of fMRI in the past decade, including the computational analysis method and software platform for fMRI brain images, the application of fMRI brain images in brain cognition, brain development, brain aging, and brain disorders, and the outlook on the important directions of fMRI in the future in this paper. The purpose of this review is to sort out and comment on the important scientific research achievements in the field of fMRI research in China, and to provide a reference for researchers in this field.
[Keywords] neurocognition;cognitive impairment;schizophrenia;major depressive disorder;bipolar disorder;neurodevelopmental disease;Alzheimer's disease;Parkinson's disease;epilepsy;functional magnetic resonance imaging;resting-state functional magnetic resonance imaging;magnetic resonance imaging

XIA Mingrui1, 2, 3   HE Yong1, 2, 3, 4*  

1 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China

2 Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China

3 IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China

4 Chinese Institute for Brain Research, Beijing 102206, China

He Y, E-mail: yong.he@bnu.edu.cn

Conflicts of interest   None.

Received  2022-10-11
Accepted  2022-10-14
DOI: 10.12015/issn.1674-8034.2022.10.004
Cite this article as: Xia MR, He Y. Opportunities and challenges of functional magnetic resonance imaging for human brain research: Achievements and prospects of China in the past ten years[J]. Chin J Magn Reson Imaging, 2022, 13(10): 23-36,65.DOI:10.12015/issn.1674-8034.2022.10.004

[1]
Ogawa S, Lee T, Kay A, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc Natl Acad Sci U S A, 1990, 87(24): 9868-9872. DOI: 10.1073/pnas.87.24.9868.
[2]
Sun HZ, He Y, Cao HQ. Functional magnetic resonance imaging research in China[J]. CNS Neurosci Ther, 2021, 27(11): 1259-1267. DOI: 10.1111/cns.13725.
[3]
Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magn Reson Med, 1995, 34(4): 537-541. DOI: 10.1002/mrm.1910340409.
[4]
Zang YF, Jiang TZ, Lu YL, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[5]
Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev, 2007, 29(2): 83-91. DOI: 10.1016/j.braindev.2006.07.002.
[6]
Zou QH, Zhu CZ, Yang YH, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
[7]
Pan PL, Zhu L, Yu TT, et al. Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: a meta-analysis of resting-state fMRI studies[J]. Ageing Res Rev, 2017, 35: 12-21. DOI: 10.1016/j.arr.2016.12.001.
[8]
He W, Liu DH, Radua J, et al. Meta-analytic comparison between PIB-PET and FDG-PET results in Alzheimer's disease and MCI[J]. Cell Biochem Biophys, 2015, 71(1): 17-26. DOI: 10.1007/s12013-014-0138-7.
[9]
Jia XZ, Zhao N, Dong HM, et al. Small P values may not yield robust findings: an example using REST-meta-PD[J]. Science Bulletin, 2021, 66(21): 2148-2152. DOI: 10.1016/j.scib.2021.06.007.
[10]
Zhang J, Cheng W, Liu ZW, et al. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders[J]. Brain, 2016, 139(Pt 8): 2307-2321. DOI: 10.1093/brain/aww143.
[11]
Yin DZ, Liu WJ, Zeljic K, et al. Dissociable changes of frontal and parietal cortices in inherent functional flexibility across the human life span[J]. J Neurosci, 2016, 36(39): 10060-10074. DOI: 10.1523/JNEUROSCI.1476-16.2016.
[12]
Liu J, Liao XH, Xia MR, et al. Chronnectome fingerprinting: identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns[J]. Hum Brain Mapp, 2018, 39(2): 902-915. DOI: 10.1002/hbm.23890.
[13]
Liao XH, Yuan L, Zhao TD, et al. Spontaneous functional network dynamics and associated structural substrates in the human brain[J/OL]. Front Hum Neurosci, 2015, 9: 478 [2022-10-13]. https://www.frontiersin.org/articles/10.3389/fnhum.2015.00478/full. DOI: 10.3389/fnhum.2015.00478.
[14]
Liao XH, Cao M, Xia MR, et al. Individual differences and time-varying features of modular brain architecture[J]. Neuroimage, 2017, 152: 94-107. DOI: 10.1016/j.neuroimage.2017.02.066.
[15]
Lei TY, Liao XH, Chen XD, et al. Progressive stabilization of brain network dynamics during childhood and adolescence[J]. Cereb Cortex, 2022, 32(5): 1024-1039. DOI: 10.1093/cercor/bhab263.
[16]
Xie YP, Xu ZL, Xia MR, et al. Alterations in connectome dynamics in autism spectrum disorder: a harmonized mega- and meta-analysis study using the autism brain imaging data exchange dataset[J]. Biol Psychiatry, 2022, 91(11): 945-955. DOI: 10.1016/j.biopsych.2021.12.004.
[17]
Yang SQ, Zhang ZQ, Chen HF, et al. Temporal variability profiling of the default mode across epilepsy subtypes[J]. Epilepsia, 2021, 62(1): 61-73. DOI: 10.1111/epi.16759.
[18]
Yang SQ, Meng Y, Li J, et al. Temporal dynamic changes of intrinsic brain activity in schizophrenia with cigarette smoking[J]. Schizophr Res, 2019, 210: 66-72. DOI: 10.1016/j.schres.2019.06.012.
[19]
Liao W, Zhang ZQ, Mantini D, et al. Dynamical intrinsic functional architecture of the brain during absence seizures[J]. Brain Struct Funct, 2014, 219(6): 2001-2015. DOI: 10.1007/s00429-013-0619-2.
[20]
Liu J, Xia MR, Wang XD, et al. The spatial organization of the chronnectome associates with cortical hierarchy and transcriptional profiles in the human brain[J/OL]. Neuroimage, 2020 [2022-10-10]. https://www.sciencedirect.com/science/article/pii/S1053811920307825. DOI: 10.1016/j.neuroimage.2020.117296.
[21]
Qi SL, Calhoun VD, van Erp TGM, et al. Multimodal fusion with reference: searching for joint neuromarkers of working memory deficits in schizophrenia[J]. IEEE Trans Med Imaging, 2018, 37(1): 93-105. DOI: 10.1109/TMI.2017.2725306.
[22]
Sui J, He H, Pearlson GD, et al. Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia[J]. Neuroimage, 2013, 66: 119-132. DOI: 10.1016/j.neuroimage.2012.10.051.
[23]
Sui J, Qi SL, van Erp TGM, et al. Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion[J/OL]. Nat Commun, 2018, 9(1): 3028 [2022-10-13]. https://www.nature.com/articles/s41467-018-05432-w. DOI: 10.1038/s41467-018-05432-w.
[24]
Qi SL, Schumann G, Bustillo J, et al. Reward processing in novelty seekers: a transdiagnostic psychiatric imaging biomarker[J]. Biol Psychiatry, 2021, 90(8): 529-539. DOI: 10.1016/j.biopsych.2021.01.011.
[25]
Liu SF, Wang HY, Song M, et al. Linked 4-way multimodal brain differences in schizophrenia in a large Chinese Han population[J]. Schizophr Bull, 2019, 45(2): 436-449. DOI: 10.1093/schbul/sby045.
[26]
Sui J, Jiang RT, Bustillo J, et al. Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises[J]. Biol Psychiatry, 2020, 88(11): 818-828. DOI: 10.1016/j.biopsych.2020.02.016.
[27]
Yan WZ, Calhoun V, Song M, et al. Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data[J]. EBioMedicine, 2019, 47: 543-552. DOI: 10.1016/j.ebiom.2019.08.023.
[28]
Zhao M, Yan WZ, Luo N, et al. An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data[J/OL]. Med Image Anal, 2022, 78: 102413 [2022-10-13]. https://www.sciencedirect.com/science/article/abs/pii/S1361841522000652. DOI: 10.1016/j.media.2022.102413.
[29]
Jiang RT, Woo CW, Qi SL, et al. Interpreting Brain Biomarkers: challenges and solutions in interpreting machine learning-based predictive neuroimaging[J]. IEEE Signal Process Mag, 2022, 39(4): 107-118. DOI: 10.1109/MSP.2022.3155951.
[30]
Lin Y, Ma JJ, Gu Y, et al. Intrinsic overlapping modular organization of human brain functional networks revealed by a multiobjective evolutionary algorithm[J]. Neuroimage, 2018, 181: 430-445. DOI: 10.1016/j.neuroimage.2018.07.019.
[31]
Gu Y, Li LF, Zhang YN, et al. The overlapping modular organization of human brain functional networks across the adult lifespan[J/OL]. Neuroimage, 2022, 253: 119125 [2022-10-13]. https://www.sciencedirect.com/science/article/pii/S1053811922002531. DOI: 10.1016/j.neuroimage.2022.119125.
[32]
Bullmore E, Sporns O. The economy of brain network organization[J]. Nat Rev Neurosci, 2012, 13(5): 336-349. DOI: 10.1038/nrn3214.
[33]
Ma JJ, Zhang JB, Lin Y, et al. Cost-efficiency trade-offs of the human brain network revealed by a multiobjective evolutionary algorithm[J/OL]. Neuroimage, 2021 [2022-20-10]. https://www.sciencedirect.com/science/article/pii/S1053811921003177. DOI: 10.1016/j.neuroimage.2021.118040.
[34]
Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans Evol Comput, 2002, 6(2): 182-197. DOI: 10.1109/4235.996017.
[35]
Mueller S, Wang DH, Fox MD, et al. Individual variability in functional connectivity architecture of the human brain[J]. Neuron, 2013, 77(3): 586-595. DOI: 10.1016/j.neuron.2012.12.028.
[36]
Stoecklein S, Hilgendorff A, Li ML, et al. Variable functional connectivity architecture of the preterm human brain: impact of developmental cortical expansion and maturation[J]. Proc Natl Acad Sci USA, 2020, 117(2): 1201-1206. DOI: 10.1073/pnas.1907892117.
[37]
Ren JX, Xu T, Wang DH, et al. Individual variability in functional organization of the human and monkey auditory cortex[J]. Cereb Cortex, 2021, 31(5): 2450-2465. DOI: 10.1093/cercor/bhaa366.
[38]
Wang DH, Buckner RL, Fox MD, et al. Parcellating cortical functional networks in individuals[J]. Nat Neurosci, 2015, 18(12): 1853-1860. DOI: 10.1038/nn.4164.
[39]
Etkin A. Neuroimaging in 2015: a turning point?[J]. Lancet Psychiatry, 2016, 3(1): 12-13. DOI: 10.1016/S2215-0366(15)00550-7.
[40]
Li ML, Wang DH, Ren JX, et al. Performing group-level functional image analyses based on homologous functional regions mapped in individuals[J/OL]. PLoS Biol, 2019 [2022-10-10]. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2007032. DOI: 10.1371/journal.pbio.2007032.
[41]
Mueller S, Wang DH, Pan RQ, et al. Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia[J]. JAMA Psychiatry, 2015, 72(6): 552-560. DOI: 10.1001/jamapsychiatry.2014.3176.
[42]
Lebois LAM, Li ML, Baker JT, et al. Large-scale functional brain network architecture changes associated with trauma-related dissociation[J]. Am J Psychiatry, 2021, 178(2): 165-173. DOI: 10.1176/appi.ajp.2020.19060647.
[43]
Wang DH, Tian YH, Li ML, et al. Functional connectivity underpinnings of electroconvulsive therapy-induced memory impairments in patients with depression[J]. Neuropsychopharmacology, 2020, 45(9): 1579-1587. DOI: 10.1038/s41386-020-0711-2.
[44]
Song XW, Dong ZY, Long XY, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing[J/OL]. PLoS One, 2011 [2022-10-10]. https://www.sciencedirect.com/science/article/abs/pii/S0165027008002458. DOI: 10.1371/journal.pone.0025031.
[45]
Jia XZ, Wang J, Sun HY, et al. RESTplus: an improved toolkit for resting-state functional magnetic resonance imaging data processing[J]. Sci Bull, 2019, 64(14): 953-954. DOI: 10.1016/j.scib.2019.05.008.
[46]
Zang ZX, Yan CG, Dong ZY, et al. Granger causality analysis implementation on MATLAB: a graphic user interface toolkit for fMRI data processing[J]. J Neurosci Methods, 2012, 203(2): 418-426. DOI: 10.1016/j.jneumeth.2011.10.006.
[47]
Yan CG, Zang YF. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI[J/OL]. Front Syst Neurosci, 2010, 4: 13 [2022-10-13]. https://www.frontiersin.org/articles/10.3389/fnsys.2010.00013/full. DOI: 10.3389/fnsys.2010.00013.
[48]
Yan CG, Wang XD, Zuo XN, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. DOI: 10.1007/s12021-016-9299-4.
[49]
Yan CG, Wang XD, Lu B. DPABISurf: data processing & analysis for brain imaging on surface[J]. Sci Bull, 2021, 66(24): 2453-2455. DOI: 10.1016/j.scib.2021.09.016.
[50]
Wang JH, Wang XD, Xia MR, et al. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics[J/OL]. Front Hum Neurosci, 2015, 9: 386 [2022-10-13]. https://www.frontiersin.org/articles/10.3389/fnhum.2015.00386/full. DOI: 10.3389/fnhum.2015.00386.
[51]
Liao W, Wu GR, Xu Q, et al. DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis[J]. Brain Connect, 2014, 4(10): 780-790. DOI: 10.1089/brain.2014.0253.
[52]
Cui ZX, Zhong SY, Xu PF, et al. PANDA: a pipeline toolbox for analyzing brain diffusion images[J/OL]. Front Hum Neurosci, 2013, 7: 42 [2022-10-13]. https://www.frontiersin.org/articles/10.3389/fnhum.2013.00042/full. DOI: 10.3389/fnhum.2013.00042.
[53]
Xia MR, Wang JH, He Y. BrainNet Viewer: a network visualization tool for human brain connectomics[J/OL]. PLoS One, 2013 [2022-10-10]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068910. DOI: 10.1371/journal.pone.0068910.
[54]
Yu QL, Zhang P, Qiu J, et al. Perceptual learning of contrast detection in the human lateral geniculate nucleus[J]. Curr Biol, 2016, 26(23): 3176-3182. DOI: 10.1016/j.cub.2016.09.034.
[55]
Zhang XL, Li ZP, Zhou TG, et al. Neural activities in V1 create a bottom-up saliency map[J]. Neuron, 2012, 73(1): 183-192. DOI: 10.1016/j.neuron.2011.10.035.
[56]
Mo C, He DJ, Fang F. Attention priority map of face images in human early visual cortex[J]. J Neurosci, 2018, 38(1): 149-157. DOI: 10.1523/JNEUROSCI.1206-17.2017.
[57]
Chen NH, Cai P, Zhou TG, et al. Perceptual learning modifies the functional specializations of visual cortical areas[J]. Proc Natl Acad Sci USA, 2016, 113(20): 5724-5729. DOI: 10.1073/pnas.1524160113.
[58]
Gandour J, Tong YX, Wong D, et al. Hemispheric roles in the perception of speech prosody[J]. NeuroImage, 2004, 23(1): 344-357. DOI: 10.1016/j.neuroimage.2004.06.004.
[59]
Ge JQ, Peng G, Lyu BJ, et al. Cross-language differences in the brain network subserving intelligible speech[J]. Proc Natl Acad Sci USA, 2015, 112(10): 2972-2977. DOI: 10.1073/pnas.1416000112.
[60]
Tan LH, Spinks JA, Gao JH, et al. Brain activation in the processing of Chinese characters and words: a functional MRI study[J]. Hum Brain Mapp, 2000, 10(1): 16-27. DOI: 10.1002/(SICI)1097-0193(200005)10:1<16:AID-HBM30.
[61]
Siok WT, Perfetti CA, Jin Z, et al. Biological abnormality of impaired reading is constrained by culture[J]. Nature, 2004, 431(7004): 71-76. DOI: 10.1038/nature02865.
[62]
Siok WT, Niu ZD, Jin Z, et al. A structural-functional basis for dyslexia in the cortex of Chinese readers[J]. Proc Natl Acad Sci USA, 2008, 105(14): 5561-5566. DOI: 10.1073/pnas.0801750105.
[63]
Shaywitz SE, Shaywitz JE, Shaywitz BA. Dyslexia in the 21st century[J]. Curr Opin Psychiatry, 2021, 34(2): 80-86. DOI: 10.1097/YCO.0000000000000670.
[64]
Gomez J, Barnett MA, Natu V, et al. Microstructural proliferation in human cortex is coupled with the development of face processing[J]. Science, 2017, 355(6320): 68-71. DOI: 10.1126/science.aag0311.
[65]
Mezer A, Yeatman JD, Stikov N, et al. Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging[J]. Nat Med, 2013, 19(12): 1667-1672. DOI: 10.1038/nm.3390.
[66]
Yuan D, Luo DY, Kwok VPY, et al. Myeloarchitectonic asymmetries of language regions in the human brain[J]. Cereb Cortex, 2021, 31(9): 4169-4179. DOI: 10.1093/cercor/bhab076.
[67]
Ralph MA, Jefferies E, Patterson K, et al. The neural and computational bases of semantic cognition[J]. Nat Rev Neurosci, 2017, 18(1): 42-55. DOI: 10.1038/nrn.2016.150.
[68]
Striem-Amit E, Wang XY, Bi YC, et al. Neural representation of visual concepts in people born blind[J/OL]. Nat Commun, 2018, 9(1): 5250 [2022-10-13]. https://www.nature.com/articles/s41467-018-07574-3. DOI: 10.1038/s41467-018-07574-3.
[69]
Wang XY, Men WW, Gao JH, et al. Two forms of knowledge representations in the human brain[J]. Neuron, 2020, 107(2): 383-393. DOI: 10.1016/j.neuron.2020.04.010.
[70]
Xu YW, Lin QX, Han ZZ, et al. Intrinsic functional network architecture of human semantic processing: modules and hubs[J]. Neuroimage, 2016, 132: 542-555. DOI: 10.1016/j.neuroimage.2016.03.004.
[71]
Bi YC. Dual coding of knowledge in the human brain[J]. Trends Cogn Sci, 2021, 25(10): 883-895. DOI: 10.1016/j.tics.2021.07.006.
[72]
Fang YX, Wang XS, Zhong SY, et al. Semantic representation in the white matter pathway[J/OL]. PLoS Biol, 2018, 16(4): e2003993 [2022-10-13]. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2003993. DOI: 10.1371/journal.pbio.2003993.
[73]
Han ZZ, Ma YJ, Gong GL, et al. White matter structural connectivity underlying semantic processing: evidence from brain damaged patients[J]. Brain, 2013, 136(Pt 10): 2952-2965. DOI: 10.1093/brain/awt205.
[74]
Xue G. The neural representations underlying human episodic memory[J]. Trends Cogn Sci, 2018, 22(6): 544-561. DOI: 10.1016/j.tics.2018.03.004.
[75]
Xue G, Dong Q, Chen CS, et al. Greater neural pattern similarity across repetitions is associated with better memory[J]. Science, 2010, 330(6000): 97-101. DOI: 10.1126/science.1193125.
[76]
Lu Y, Wang CM, Chen CS, et al. Spatiotemporal neural pattern similarity supports episodic memory[J]. Curr Biol, 2015, 25(6): 780-785. DOI: 10.1016/j.cub.2015.01.055.
[77]
Zheng L, Gao ZY, Xiao XQ, et al. Reduced fidelity of neural representation underlies episodic memory decline in normal aging[J]. Cereb Cortex, 2018, 28(7): 2283-2296. DOI: 10.1093/cercor/bhx130.
[78]
Ye ZF, Zhu B, Zhuang LP, et al. Neural global pattern similarity underlies true and false memories[J]. J Neurosci, 2016, 36(25): 6792-6802. DOI: 10.1523/JNEUROSCI.0425-16.2016.
[79]
Zhu B, Chen CS, Shao XH, et al. Multiple interactive memory representations underlie the induction of false memory[J]. Proc Natl Acad Sci USA, 2019, 116(9): 3466-3475. DOI: 10.1073/pnas.1817925116.
[80]
Xiao XQ, Dong Q, Gao JH, et al. Transformed neural pattern reinstatement during episodic memory retrieval[J]. J Neurosci, 2017, 37(11): 2986-2998. DOI: 10.1523/JNEUROSCI.2324-16.2017.
[81]
Liu J, Zhang H, Yu T, et al. Stable maintenance of multiple representational formats in human visual short-term memory[J]. Proc Natl Acad Sci USA, 2020, 117(51): 32329-32339. DOI: 10.1073/pnas.2006752117.
[82]
Liu J, Zhang H, Yu T, et al. Transformative neural representations support long-term episodic memory[J/OL]. Sci Adv, 2021 [2022-10-10]. https://www.science.org/doi/full/10.1126/sciadv.abg9715. DOI: 10.1126/sciadv.abg9715.
[83]
Feng KY, Zhao X, Liu J, et al. Spaced learning enhances episodic memory by increasing neural pattern similarity across repetitions[J]. J Neurosci, 2019, 39(27): 5351-5360. DOI: 10.1523/JNEUROSCI.2741-18.2019.
[84]
Ye ZF, Shi L, Li AQ, et al. Retrieval practice facilitates memory updating by enhancing and differentiating medial prefrontal cortex representations[J/OL]. Elife, 2020 [2022-10-10]. https://elifesciences.org/articles/57023. DOI: 10.7554/eLife.57023.
[85]
Liu CQ, Ye ZF, Chen CS, et al. Hippocampal representations of event structure and temporal context during episodic temporal order memory[J]. Cereb Cortex, 2022, 32(7): 1520-1534. DOI: 10.1093/cercor/bhab304.
[86]
Sheng JT, Zhang L, Liu CQ, et al. Higher-dimensional neural representations predict better episodic memory[J/OL]. Sci Adv, 2022 [2022-10-10]. https://www.science.org/doi/abs/10.1126/sciadv.abm3829. DOI: 10.1126/sciadv.abm3829.
[87]
Qin SZ, Hermans EJ, van Marle HJ, et al. Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex[J]. Biol Psychiatry, 2009, 66(1): 25-32. DOI: 10.1016/j.biopsych.2009.03.006.
[88]
Liu YZ, Lin WJ, Liu C, et al. Memory consolidation reconfigures neural pathways involved in the suppression of emotional memories[J/OL]. Nat Commun, 2016 [2022-10-10]. https://www.nature.com/articles/ncomms13375. DOI: 10.1038/ncomms13375.
[89]
Qin SZ, Young CB, Duan XJ, et al. Amygdala subregional structure and intrinsic functional connectivity predicts individual differences in anxiety during early childhood[J]. Biol Psychiatry, 2014, 75(11): 892-900. DOI: 10.1016/j.biopsych.2013.10.006.
[90]
Zhuang LP, Wang JY, Xiong BS, et al. Rapid neural reorganization during retrieval practice predicts subsequent long-term retention and false memory[J]. Nat Hum Behav, 2022, 6(1): 134-145. DOI: 10.1038/s41562-021-01188-4.
[91]
Xiong BS, Chen CM, Tian YQ, et al. Brain preparedness: the proactive role of the cortisol awakening response in hippocampal-prefrontal functional interactions[J/OL]. Prog Neurobiol, 2021 [2022-10-10]. https://www.sciencedirect.com/science/article/pii/S0301008221001416. DOI: 10.1016/j.pneurobio.2021.102127.
[92]
Tian T, Young CB, Zhu YN, et al. Socioeconomic disparities affect children's amygdala-prefrontal circuitry via stress hormone response[J]. Biol Psychiatry, 2021, 90(3): 173-181. DOI: 10.1016/j.biopsych.2021.02.002.
[93]
Liu LY, Wu JH, Geng HY, et al. Long-term stress and trait anxiety affect brain network balance in dynamic cognitive computations[J]. Cereb Cortex, 2022, 32(14): 2957-2971. DOI: 10.1093/cercor/bhab393.
[94]
Qin SZ, Young CB, Supekar K, et al. Immature integration and segregation of emotion-related brain circuitry in young children[J]. Proc Natl Acad Sci USA, 2012, 109(20): 7941-7946. DOI: 10.1073/pnas.1120408109.
[95]
Qin SZ, Cho S, Chen TW, et al. Hippocampal-neocortical functional reorganization underlies children's cognitive development[J]. Nat Neurosci, 2014, 17(9): 1263-1269. DOI: 10.1038/nn.3788.
[96]
Hao L, Li L, Chen ML, et al. Mapping domain- and age-specific functional brain activity for children's cognitive and affective development[J]. Neurosci Bull, 2021, 37(6): 763-776. DOI: 10.1007/s12264-021-00650-7.
[97]
Xu JH, Hao L, Chen ML, et al. Developmental sex differences in negative emotion decision-making dynamics: computational evidence and amygdala-prefrontal pathways[J]. Cereb Cortex, 2022, 32(11): 2478-2491. DOI: 10.1093/cercor/bhab359.
[98]
Jiang NZ, Xu JH, Li XY, et al. Negative parenting affects adolescent internalizing symptoms through alterations in amygdala-prefrontal circuitry: a longitudinal twin study[J]. Biol Psychiatry, 2021, 89(6): 560-569. DOI: 10.1016/j.biopsych.2020.08.002.
[99]
Liu YZ, Li SY, Lin WJ, et al. Oxytocin modulates social value representations in the amygdala[J]. Nat Neurosci, 2019, 22(4): 633-641. DOI: 10.1038/s41593-019-0351-1.
[100]
Yang JX, Zhang HJ, Ni J, et al. Within-group synchronization in the prefrontal cortex associates with intergroup conflict[J]. Nat Neurosci, 2020, 23(6): 754-760. DOI: 10.1038/s41593-020-0630-x.
[101]
Ma YN, Li SY, Wang CB, et al. Distinct oxytocin effects on belief updating in response to desirable and undesirable feedback[J]. Proc Natl Acad Sci USA, 2016, 113(33): 9256-9261. DOI: 10.1073/pnas.1604285113.
[102]
Wang DY, Ma YN. Oxytocin facilitates valence-dependent valuation of social evaluation of the self[J/OL]. Commun Biol, 2020, 3(1): 433 [2022-10-13]. https://www.nature.com/articles/s42003-020-01168-w. DOI: 10.1038/s42003-020-01168-w.
[103]
Zhang HJ, Gross J, de Dreu C, et al. Oxytocin promotes coordinated out-group attack during intergroup conflict in humans[J/OL]. Elife, 2019 [2022-10-10]. https://elifesciences.org/articles/40698. DOI: 10.7554/eLife.40698.
[104]
Ma YN, Liu Y, Rand DG, et al. Opposing oxytocin effects on intergroup cooperative behavior in intuitive and reflective minds[J]. Neuropsychopharmacology, 2015, 40(10): 2379-2387. DOI: 10.1038/npp.2015.87.
[105]
Li SY, Ma SM, Wang DY, et al. Oxytocin and the punitive hub-dynamic spread of cooperation in human social networks[J]. J Neurosci, 2022, 42(30): 5930-5943. DOI: 10.1523/JNEUROSCI.2303-21.2022.
[106]
Ma YN, Shamay-Tsoory S, Han SH, et al. Oxytocin and social adaptation: insights from neuroimaging studies of healthy and clinical populations[J]. Trends Cogn Sci, 2016, 20(2): 133-145. DOI: 10.1016/j.tics.2015.10.009.
[107]
Yan XY, Yong X, Huang WH, et al. Placebo treatment facilitates social trust and approach behavior[J]. Proc Natl Acad Sci USA, 2018, 115(22): 5732-5737. DOI: 10.1073/pnas.1800779115.
[108]
Fan FM, Liao XH, Lei TY, et al. Development of the default-mode network during childhood and adolescence: a longitudinal resting-state fMRI study[J/OL]. Neuroimage, 2021 [2022-10-10]. https://www.sciencedirect.com/science/article/pii/S1053811920310661. DOI: 10.1016/j.neuroimage.2020.117581.
[109]
Xia YM, Xia MR, Liu J, et al. Development of functional connectome gradients during childhood and adolescence[J]. Sci Bull, 2022, 67(10): 1049-1061. DOI: 10.1016/j.scib.2022.01.002.
[110]
Liu SM, Wang YS, Zhang Q, et al. Chinese Color Nest Project: an accelerated longitudinal brain-mind cohort[J/OL]. Dev Cogn Neurosci, 2021 [2022-10-10]. https://www.sciencedirect.com/science/article/pii/S1878929321001109. DOI: 10.1016/j.dcn.2021.101020.
[111]
Yang N, He Y, Zhang Z, et al. Chinese color nest project: growing up in China[J]. Chin Sci Bull, 2017, 62(26): 3008-3022. DOI: 10.1360/N972017-00362.
[112]
Dong HM, Margulies DS, Zuo XN, et al. Shifting gradients of macroscale cortical organization mark the transition from childhood to adolescence[J/OL]. Proc Natl Acad Sci USA, 2021 [2022-10-10]. https://www.pnas.org/doi/abs/10.1073/pnas.2024448118. DOI: 10.1073/pnas.2024448118.
[113]
Yang CS, Li X, Zhang JY, et al. Early prevention of cognitive impairment in the community population: the Beijing Aging Brain Rejuvenation Initiative[J]. Alzheimers Dement, 2021, 17(10): 1610-1618. DOI: 10.1002/alz.12326.
[114]
Yang YR, Lv CL, Li H, et al. Community-based model for dementia risk screening: the Beijing aging brain rejuvenation initiative (BABRI) brain health system[J]. J Am Med Dir Assoc, 2021, 22(7): 1500-1506. DOI: 10.1016/j.jamda.2020.12.024.
[115]
Li X, Wang YZ, Wang WX, et al. Age-related decline in the topological efficiency of the brain structural connectome and cognitive aging[J]. Cereb Cortex, 2020, 30(8): 4651-4661. DOI: 10.1093/cercor/bhaa066.
[116]
Li X, Ma C, Zhang JY, et al. Prevalence of and potential risk factors for mild cognitive impairment in community-dwelling residents of Beijing[J]. J Am Geriatr Soc, 2013, 61(12): 2111-2119. DOI: 10.1111/jgs.12552.
[117]
Shu N, Liang Y, Li H, et al. Disrupted topological organization in white matter structural networks in amnestic mild cognitive impairment: relationship to subtype[J]. Radiology, 2012, 265(2): 518-527. DOI: 10.1148/radiol.12112361.
[118]
Wang L, Li H, Liang Y, et al. Amnestic mild cognitive impairment: topological reorganization of the default-mode network[J]. Radiology, 2013, 268(2): 501-514. DOI: 10.1148/radiol.13121573.
[119]
Li X, Xia JN, Ma C, et al. Accelerating structural degeneration in temporal regions and their effects on cognition in aging of MCI patients[J]. Cereb Cortex, 2020, 30(1): 326-338. DOI: 10.1093/cercor/bhz090.
[120]
Chen YJ, Li P, Gu B, et al. The effects of an APOE promoter polymorphism on human cortical morphology during nondemented aging[J]. J Neurosci, 2015, 35(4): 1423-1431. DOI: 10.1523/JNEUROSCI.1946-14.2015.
[121]
Shu N, Li X, Ma C, et al. Effects of APOE promoter polymorphism on the topological organization of brain structural connectome in nondemented elderly[J]. Hum Brain Mapp, 2015, 36(12): 4847-4858. DOI: 10.1002/hbm.22954.
[122]
Ma C, Zhang YJ, Li X, et al. The TT allele of rs405509 synergizes with APOE ε4 in the impairment of cognition and its underlying default mode network in non-demented elderly[J]. Curr Alzheimer Res, 2016, 13(6): 708-717. DOI: 10.2174/1567205013666160129100350.
[123]
Ma C, Zhang Y, Li X, et al. Is there a significant interaction effect between apolipoprotein E rs405509 T/T and ε4 genotypes on cognitive impairment and gray matter volume?[J]. Eur J Neurol, 2016, 23(9): 1415-1425. DOI: 10.1111/ene.13052.
[124]
Liu Z, Dai XW, Tao WH, et al. APOE influences working memory in non-demented elderly through an interaction with SPON1 rs2618516[J]. Hum Brain Mapp, 2018, 39(7): 2859-2867. DOI: 10.1002/hbm.24045.
[125]
Liang Y, Li H, Lv CL, et al. Sex moderates the effects of the Sorl1 gene rs2070045 polymorphism on cognitive impairment and disruption of the cingulum integrity in healthy elderly[J/OL]. Neuropsychopharmacology, 2015, 40(10): 2487 [2022-10-13]. https://www.nature.com/articles/npp20151. DOI: 10.1038/npp.2015.137.
[126]
Gao SD, Chen YJ, Sang F, et al. White matter microstructural change contributes to worse cognitive function in patients with type 2 diabetes[J]. Diabetes, 2019, 68(11): 2085-2094. DOI: 10.2337/db19-0233.
[127]
Zhang JY, Wang YX, Wang J, et al. White matter integrity disruptions associated with cognitive impairments in type 2 diabetic patients[J]. Diabetes, 2014, 63(11): 3596-3605. DOI: 10.2337/db14-0342.
[128]
Chen YJ, Liu Z, Zhang JY, et al. Altered brain activation patterns under different working memory loads in patients with type 2 diabetes[J]. Diabetes Care, 2014, 37(12): 3157-3163. DOI: 10.2337/dc14-1683.
[129]
Li X, Liang Y, Chen YJ, et al. Disrupted frontoparietal network mediates white matter structure dysfunction associated with cognitive decline in hypertension patients[J/OL]. J Neurosci, 2015 [2022-10-10]. https://www.jneurosci.org/content/35/27/10015. DOI: 10.1523/JNEUROSCI.5113-14.2015.
[130]
Li X, Ma C, Sun X, et al. Disrupted white matter structure underlies cognitive deficit in hypertensive patients[J]. Eur Radiol, 2016, 26(9): 2899-2907. DOI: 10.1007/s00330-015-4116-2.
[131]
Li X, Wang WX, Wang AL, et al. Vulnerability of the frontal and parietal regions in hypertensive patients during working memory task[J]. J Hypertens, 2017, 35(5): 1044-1051. DOI: 10.1097/HJH.0000000000001250.
[132]
Yang Y, Chen Y, Chen K, et al. Increased intrinsic connectivity for structural atrophy and functional maintenance after acute ischaemic stroke[J]. Eur J Neurol, 2019, 26(6): 935-942. DOI: 10.1111/ene.13913.
[133]
Chen YJ, Wang AL, Tang JF, et al. Association of white matter integrity and cognitive functions in patients with subcortical silent lacunar infarcts[J]. Stroke, 2015, 46(4): 1123-1126. DOI: 10.1161/STROKEAHA.115.008998.
[134]
Chen YJ, Lv CL, Li X, et al. The positive impacts of early-life education on cognition, leisure activity, and brain structure in healthy aging[J]. Aging (Albany NY), 2019, 11(14): 4923-4942. DOI: 10.18632/aging.102088.
[135]
Zhang JY, Wang ZJ, Xu SJ, et al. The effects of CCRC on cognition and brain activity in aMCI patients: a pilot placebo controlled BOLD fMRI study[J]. Curr Alzheimer Res, 2014, 11(5): 484-493. DOI: 10.2174/1567205011666140505095939.
[136]
Zhang JY, Xu K, Wei DF, et al. The effects of bushen capsule on episodic memory in amnestic mild cognitive impairment patients: a pilot placebo controlled fMRI study[J]. J Alzheimers Dis, 2015, 46(3): 665-676. DOI: 10.3233/JAD-150004.
[137]
Zhang JY, Liu Z, Zhang HM, et al. A two-year treatment of amnestic mild cognitive impairment using a compound Chinese medicine: a placebo controlled randomized trial[J/OL]. Sci Rep, 2016 [2022-10-10]. https://www.nature.com/articles/srep28982. DOI: 10.1038/srep28982.
[138]
Abi-Dargham A, Horga G. The search for imaging biomarkers in psychiatric disorders[J]. Nat Med, 2016, 22(11): 1248-1255. DOI: 10.1038/nm.4190.
[139]
Li F, Huang XQ, Tang WJ, et al. Multivariate pattern analysis of DTI reveals differential white matter in individuals with obsessive-compulsive disorder[J]. Hum Brain Mapp, 2014, 35(6): 2643-2651. DOI: 10.1002/hbm.22357.
[140]
Gong QY, Dazzan P, Scarpazza C, et al. A neuroanatomical signature for schizophrenia across different ethnic groups[J]. Schizophr Bull, 2015, 41(6): 1266-1275. DOI: 10.1093/schbul/sbv109.
[141]
Gong QY, Li LJ, du MY, et al. Quantitative prediction of individual psychopathology in trauma survivors using resting-state FMRI[J]. Neuropsychopharmacology, 2014, 39(3): 681-687. DOI: 10.1038/npp.2013.251.
[142]
Wang YL, Tang S, Zhang LQ, et al. Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features[J]. Br J Psychiatry, 2021, 219(5): 606-613. DOI: 10.1192/bjp.2021.103.
[143]
Zhang WJ, Li SY, Wang XL, et al. Abnormal dynamic functional connectivity between speech and auditory areas in schizophrenia patients with auditory hallucinations[J]. Neuroimage Clin, 2018, 19: 918-924. DOI: 10.1016/j.nicl.2018.06.018.
[144]
Sun HQ, Lui S, Yao L, et al. Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis[J]. JAMA Psychiatry, 2015, 72(7): 678-686. DOI: 10.1001/jamapsychiatry.2015.0505.
[145]
Lui S, Li T, Deng W, et al. Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by "resting state" functional magnetic resonance imaging[J]. Arch Gen Psychiatry, 2010, 67(8): 783-792. DOI: 10.1001/archgenpsychiatry.2010.84.
[146]
Lui S, Wu QZ, Qiu LH, et al. Resting-state functional connectivity in treatment-resistant depression[J]. Am J Psychiatry, 2011, 168(6): 642-648. DOI: 10.1176/appi.ajp.2010.10101419.
[147]
Tian LX, Jiang TZ, Wang YF, et al. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder[J]. Neurosci Lett, 2006, 400(1/2): 39-43. DOI: 10.1016/j.neulet.2006.02.022.
[148]
Cao QJ, Zang YF, Sun L, et al. Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study[J]. Neuroreport, 2006, 17(10): 1033-1036. DOI: 10.1097/01.wnr.0000224769.92454.5d.
[149]
Wang L, Zhu CZ, He Y, et al. Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder[J]. Hum Brain Mapp, 2009, 30(2): 638-649. DOI: 10.1002/hbm.20530.
[150]
Zhu CZ, Zang YF, Cao QJ, et al. Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder[J]. Neuroimage, 2008, 40(1): 110-120. DOI: 10.1016/j.neuroimage.2007.11.029.
[151]
An L, Cao XH, Cao QJ, et al. Methylphenidate normalizes resting-state brain dysfunction in boys with attention deficit hyperactivity disorder[J]. Neuropsychopharmacology, 2013, 38(7): 1287-1295. DOI: 10.1038/npp.2013.27.
[152]
Fu Z, Yuan J, Pei XY, et al. Shared and unique effects of long-term administration of methylphenidate and atomoxetine on degree centrality in medication-naïve children with attention-deficit/hyperactive disorder[J]. Int J Neuropsychopharmacol, 2022, 25(9): 709-719. DOI: 10.1093/ijnp/pyac028.
[153]
Cao QJ, Shu N, An L, et al. Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder[J]. J Neurosci, 2013, 33(26): 10676-10687. DOI: 10.1523/JNEUROSCI.4793-12.2013.
[154]
Li A, Zalesky A, Yue WH, et al. A neuroimaging biomarker for striatal dysfunction in schizophrenia[J]. Nat Med, 2020, 26(4): 558-565. DOI: 10.1038/s41591-020-0793-8.
[155]
Liu B, Zhang XL, Hou B, et al. The impact of MIR137 on dorsolateral prefrontal-hippocampal functional connectivity in healthy subjects[J]. Neuropsychopharmacology, 2014, 39(9): 2153-2160. DOI: 10.1038/npp.2014.63.
[156]
Zhang XL, Yu JT, Li J, et al. Bridging integrator 1 (BIN1) genotype effects on working memory, hippocampal volume, and functional connectivity in young healthy individuals[J]. Neuropsychopharmacology, 2015, 40(7): 1794-1803. DOI: 10.1038/npp.2015.30.
[157]
Liu B, Zhang XL, Cui Y, et al. Polygenic risk for schizophrenia influences cortical gyrification in 2 independent general populations[J]. Schizophr Bull, 2017, 43(3): 673-680. DOI: 10.1093/schbul/sbw051.
[158]
Liu S, Li A, Liu Y, et al. Polygenic effects of schizophrenia on hippocampal grey matter volume and hippocampus-medial prefrontal cortex functional connectivity[J]. Br J Psychiatry, 2020, 216(5): 267-274. DOI: 10.1192/bjp.2019.127.
[159]
Liu S, Li A, Liu Y, et al. MIR137 polygenic risk is associated with schizophrenia and affects functional connectivity of the dorsolateral prefrontal cortex[J]. Psychol Med, 2020, 50(9): 1510-1518. DOI: 10.1017/S0033291719001442.
[160]
Hu K, Wang M, Liu Y, et al. Multisite schizophrenia classification by integrating structural magnetic resonance imaging data with polygenic risk score[J/OL]. Neuroimage Clin, 2021 [2022-10-10]. https://www.sciencedirect.com/science/article/pii/S2213158221003041. DOI: 10.1016/j.nicl.2021.102860.
[161]
Xia MR, Si TM, Sun XY, et al. Reproducibility of functional brain alterations in major depressive disorder: evidence from a multisite resting-state functional MRI study with 1, 434 individuals[J]. Neuroimage, 2019, 189: 700-714. DOI: 10.1016/j.neuroimage.2019.01.074.
[162]
Xia MR, Liu J, Mechelli A, et al. Connectome gradient dysfunction in major depression and its association with gene expression profiles and treatment outcomes[J]. Mol Psychiatry, 2022, 27(3): 1384-1393. DOI: 10.1038/s41380-022-01519-5.
[163]
Chen X, Lu B, Li HX, et al. The DIRECT consortium and the REST-meta-MDD project: towards neuroimaging biomarkers of major depressive disorder[J]. psychoradiology, 2022, 2(1): 32-42. DOI: 10.1093/psyrad/kkac005.
[164]
Wang L, Xia MR, Li K, et al. The effects of antidepressant treatment on resting-state functional brain networks in patients with major depressive disorder[J]. Hum Brain Mapp, 2015, 36(2): 768-778. DOI: 10.1002/hbm.22663.
[165]
Yan CG, Chen X, Li L, et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder[J]. Proc Natl Acad Sci USA, 2019, 116(18): 9078-9083. DOI: 10.1073/pnas.1900390116.
[166]
Yang H, Chen X, Chen ZB, et al. Disrupted intrinsic functional brain topology in patients with major depressive disorder[J]. Mol Psychiatry, 2021, 26(12): 7363-7371. DOI: 10.1038/s41380-021-01247-2.
[167]
Chang M, Edmiston EK, Womer FY, et al. Spontaneous low-frequency fluctuations in the neural system for emotional perception in major psychiatric disorders: amplitude similarities and differences across frequency bands[J]. J Psychiatry Neurosci, 2019, 44(2): 132-141. DOI: 10.1503/jpn.170226.
[168]
Wei YG, Duan J, Womer FY, et al. Applying dimensional psychopathology: transdiagnostic associations among regional homogeneity, leptin and depressive symptoms[J/OL]. Transl Psychiatry, 2020, 10(1): 248 [2022-10-13]. https://www.nature.com/articles/s41398-020-00932-0. DOI: 10.1038/s41398-020-00932-0.
[169]
Xia MR, Womer FY, Chang M, et al. Shared and distinct functional architectures of brain networks across psychiatric disorders[J]. Schizophr Bull, 2019, 45(2): 450-463. DOI: 10.1093/schbul/sby046.
[170]
Chang M, Womer FY, Edmiston EK, et al. Neurobiological commonalities and distinctions among three major psychiatric diagnostic categories: a structural MRI study[J]. Schizophr Bull, 2018, 44(1): 65-74. DOI: 10.1093/schbul/sbx028.
[171]
Ma Q, Tang YQ, Wang F, et al. Transdiagnostic dysfunctions in brain modules across patients with schizophrenia, bipolar disorder, and major depressive disorder: a connectome-based study[J]. Schizophr Bull, 2020, 46(3): 699-712. DOI: 10.1093/schbul/sbz111.
[172]
Chang M, Womer FY, Gong XH, et al. Identifying and validating subtypes within major psychiatric disorders based on frontal-posterior functional imbalance via deep learning[J]. Mol Psychiatry, 2021, 26(7): 2991-3002. DOI: 10.1038/s41380-020-00892-3.
[173]
Zhang X, Wang F, Zhang W. Response to: significance and stability of deep learning-based identification of subtypes within major psychiatric disorders. Molecular Psychiatry (2022)[J/OL]. Mol Psychiatry, 2022 [2022-10-10]. https://www.nature.com/articles/s41380-022-01613-8. DOI: 10.1038/s41380-022-01613-8.
[174]
Li JC, Jin D, Li A, et al. ASAF: altered spontaneous activity fingerprinting in Alzheimer's disease based on multisite fMRI[J]. Sci Bull, 2019, 64(14): 998-1010. DOI: 10.1016/j.scib.2019.04.034.
[175]
Liu Y, Yu CS, Zhang XQ, et al. Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease[J]. Cereb Cortex, 2014, 24(6): 1422-1435. DOI: 10.1093/cercor/bhs410.
[176]
Zhan YF, Yao HX, Wang P, et al. Network-based statistic show aberrant functional connectivity in Alzheimer's disease[J]. IEEE J Sel Top Signal Process, 2016, 10(7): 1182-1188. DOI: 10.1109/JSTSP.2016.2600298.
[177]
Jin D, Wang P, Zalesky A, et al. Grab-AD: Generalizability and reproducibility of altered brain activity and diagnostic classification in Alzheimer's Disease[J]. Hum Brain Mapp, 2020, 41(12): 3379-3391. DOI: 10.1002/hbm.25023.
[178]
Dai ZJ, Yan CG, Li KC, et al. Identifying and mapping connectivity patterns of brain network hubs in Alzheimer's disease[J]. Cereb Cortex, 2015, 25(10): 3723-3742. DOI: 10.1093/cercor/bhu246.
[179]
Gu Y, Lin Y, Huang LL, et al. Abnormal dynamic functional connectivity in Alzheimer's disease[J]. CNS Neurosci Ther, 2020, 26(9): 962-971. DOI: 10.1111/cns.13387.
[180]
Dai ZJ, Lin QX, Li T, et al. Disrupted structural and functional brain networks in Alzheimer's disease[J]. Neurobiol Aging, 2019, 75: 71-82. DOI: 10.1016/j.neurobiolaging.2018.11.005.
[181]
Chen PD, Yao HX, Tijms BM, et al. Four distinct subtypes of Alzheimer's disease based on resting-state connectivity biomarkers[J/OL]. Biol Psychiatry, 2022 [2022-10-13]. https://www.biologicalpsychiatryjournal.com/article/S0006-3223(22)01368-3. DOI: 10.1016/j.biopsych.2022.06.019.
[182]
Dai ZJ, Yan CG, Wang ZQ, et al. Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)[J]. Neuroimage, 2012, 59(3): 2187-2195. DOI: 10.1016/j.neuroimage.2011.10.003.
[183]
Wu T, Long XY, Zang YF, et al. Regional homogeneity changes in patients with Parkinson's disease[J]. Hum Brain Mapp, 2009, 30(5): 1502-1510. DOI: 10.1002/hbm.20622.
[184]
Wu T, Long XY, Wang L, et al. Functional connectivity of cortical motor areas in the resting state in Parkinson's disease[J]. Hum Brain Mapp, 2011, 32(9): 1443-1457. DOI: 10.1002/hbm.21118.
[185]
Gao LL, Wu XM, Zhang JR, et al. Brain activity in Parkinson's disease patients with mild cognitive impairment[J]. Sci Bull, 2016, 61(24): 1876-1883. DOI: 10.1007/s11434-016-1205-9.
[186]
Wu T, Ma YL, Zheng Z, et al. Parkinson's disease-related spatial covariance pattern identified with resting-state functional MRI[J]. J Cereb Blood Flow Metab, 2015, 35(11): 1764-1770. DOI: 10.1038/jcbfm.2015.118.
[187]
Wu T, Hallett M. A functional MRI study of automatic movements in patients with Parkinson's disease[J]. Brain, 2005, 128(Pt 10): 2250-2259. DOI: 10.1093/brain/awh569.
[188]
Wu T, Wang L, Hallett M, et al. Neural correlates of bimanual anti-phase and in-phase movements in Parkinson's disease[J]. Brain, 2010, 133(Pt 8): 2394-2409. DOI: 10.1093/brain/awq151.
[189]
Wu T, Zhang JR, Hallett M, et al. Neural correlates underlying micrographia in Parkinson's disease[J]. Brain, 2016, 139(Pt 1): 144-160. DOI: 10.1093/brain/awv319.
[190]
Wu T, Hallett M. The cerebellum in Parkinson's disease[J]. Brain, 2013, 136(Pt 3): 696-709. DOI: 10.1093/brain/aws360.
[191]
Zhang ZQ, Lu GM, Zhong Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis[J]. Hum Brain Mapp, 2010, 31(12): 1851-1861. DOI: 10.1002/hbm.20982.
[192]
Zhang ZQ, Xu Q, Liao W, et al. Pathological uncoupling between amplitude and connectivity of brain fluctuations in epilepsy[J]. Hum Brain Mapp, 2015, 36(7): 2756-2766. DOI: 10.1002/hbm.22805.
[193]
Xu Q, Zhang Z, Liao W, et al. Time-shift homotopic connectivity in mesial temporal lobe epilepsy[J]. AJNR Am J Neuroradiol, 2014, 35(9): 1746-1752. DOI: 10.3174/ajnr.A3934.
[194]
Zhang ZQ, Liao W, Chen HF, et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy[J]. Brain, 2011, 134(Pt 10): 2912-2928. DOI: 10.1093/brain/awr223.
[195]
Zhang QR, Yang F, Hu Z, et al. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes[J]. Eur Radiol, 2017, 27(5): 2137-2145. DOI: 10.1007/s00330-016-4531-z.
[196]
Ji GJ, Zhang ZQ, Xu Q, et al. Generalized tonic-clonic seizures: aberrant interhemispheric functional and anatomical connectivity[J]. Radiology, 2014, 271(3): 839-847. DOI: 10.1148/radiol.13131638.
[197]
Weng YF, Larivière S, Caciagli L, et al. Macroscale and microcircuit dissociation of focal and generalized human epilepsies[J/OL]. Commun Biol, 2020, 3(1): 244 [2022-10-13]. https://www.nature.com/articles/s42003-020-0958-5. DOI: 10.1038/s42003-020-0958-5.
[198]
Wu JS, Zhou LF, Chen W, et al. Prospective comparison of functional magnetic resonance imaging and intraoperative motor evoked potential monitoring for cortical mapping of primary motor areas[J]. Chin J Surg, 2005, 43(17): 1141-1145. DOI: 10.3760/j:issn:0529-5815.2005.17.011.
[199]
Lang LQ, Xu QW, Pan L, et al. BOLD-fMRI in preoperative assessment of language areas: correlation with direct cortical stimulation[J]. Chin J Med Comput Imaging, 2005, 11(3): 156-160. DOI: 10.19627/j.cnki.cn31-1700/th.2005.03.003.
[200]
Metwali H, Raemaekers M, Kniese K, et al. Reliability of functional magnetic resonance imaging in patients with brain tumors: a critical review and meta-analysis[J]. World Neurosurg, 2019, 125: 183-190. DOI: 10.1016/j.wneu.2019.01.194.
[201]
Giussani C, Roux FE, Ojemann J, et al. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies[J]. Neurosurgery, 2010, 66(1): 113-120. DOI: 10.1227/01.NEU.0000360392.15450.C9.
[202]
Kuchcinski G, Mellerio C, Pallud J, et al. Three-tesla functional MR language mapping: comparison with direct cortical stimulation in gliomas[J]. Neurology, 2015, 84(6): 560-568. DOI: 10.1212/WNL.0000000000001226.
[203]
Zhang N, Xia MR, Qiu TM, et al. Reorganization of cerebro-cerebellar circuit in patients with left hemispheric gliomas involving language network: a combined structural and resting-state functional MRI study[J]. Hum Brain Mapp, 2018, 39(12): 4802-4819. DOI: 10.1002/hbm.24324.
[204]
Qiu TM, Yan CG, Tang WJ, et al. Localizing hand motor area using resting-state fMRI: validated with direct cortical stimulation[J]. Acta Neurochir (Wien), 2014, 156(12): 2295-2302. DOI: 10.1007/s00701-014-2236-0.
[205]
Qiu TM, Wu JS, Zhuang DX, et al. Preliminary application of resting-state functional magnetic resonance imaging in the preoperative localizing language cortex of giioma patients[J]. Chin J Neurosurg, 2012(12): 1196-1200. DOI: 10.3760/cma.j.issn.1001-2346.2012.12.004.
[206]
Lu JF, Zhang H, Hameed NUF, et al. An automated method for identifying an independent component analysis-based language-related resting-state network in brain tumor subjects for surgical planning[J]. Sci Rep, 2017, 7(1): 13769. DOI: 10.1038/s41598-017-14248-5.
[207]
Xia MR, He Y. Functional connectomics from a "big data" perspective[J]. NeuroImage, 2017, 160: 152-167. DOI: 10.1016/j.neuroimage.2017.02.031.
[208]
Li HJ, Smith SM, Gruber S, et al. Denoising scanner effects from multimodal MRI data using linked independent component analysis[J/OL]. Neuroimage, 2020, 208: 116388[2022-10-13]. https://www.sciencedirect.com/science/article/pii/S1053811919309796. DOI: 10.1016/j.neuroimage.2019.116388.
[209]
Tian DZ, Zeng ZL, Sun XY, et al. A deep learning-based multisite neuroimage harmonization framework established with a traveling-subject dataset[J/OL]. Neuroimage, 2022 [2022-10-10]. https://www.sciencedirect.com/science/article/pii/S1053811922004165. DOI: 10.1016/j.neuroimage.2022.119297.
[210]
T Vu A, Jamison K, Glasser MF, et al. Tradeoffs in pushing the spatial resolution of fMRI for the 7 T Human Connectome Project[J]. Neuroimage, 2017, 154: 23-32. DOI: 10.1016/j.neuroimage.2016.11.049.
[211]
Cole EJ, Stimpson KH, Bentzley BS, et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression[J]. Am J Psychiatry, 2020, 177(8): 716-726. DOI: 10.1176/appi.ajp.2019.19070720.

PREV Opportunities and challenges of musculoskeletal imaging: Achievements and prospects over the past decade in China
NEXT Opportunities and challenges of diffusion spectrum magnetic resonance imaging: Achievements and prospects over the past decade in China
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn