Share:
Share this content in WeChat
X
Specialist Forums
Opportunities and challenges of musculoskeletal imaging: Achievements and prospects over the past decade in China
NI Ming  YUAN Huishu 

Cite this article as: Ni M, Yuan HS. Opportunities and challenges of musculoskeletal imaging: Achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imaging, 2022, 13(10): 18-22, 45. DOI:10.12015/issn.1674-8034.2022.10.003.


[Abstract] Since the 18th National Congress of the Communist Party of China, musculoskeletal imaging has ushered in rapid development. Relying on the promotion of national policies, the popularization of national fitness, the improvement of people's health awareness, the help of the Musculoskeletal Group of Chinese Society of Radiology the development of professional courses and lectures, and the continuous emergence of scientific research results, musculoskeletal imaging has received more and more attention. The influence of the discipline is continuously improved, and the professional ability of radiologists is continually improved. With the update of MRI hardware facilities, the development of accessories, and the development and application of related technologies, the clinical value and application scope of musculoskeletal imaging have continued to increase, benefiting more and more patients. Musculoskeletal imaging plays an irreplaceable role in the identification, diagnosis, differential diagnosis and quantitative analysis of various musculoskeletal diseases. It provides valuable information for clinical diagnosis and treatment, assists clinical decision-making, and is an indispensable inspection method for accurate medical treatment. Nevertheless, musculoskeletal imaging still has great potential for improvement in many aspects, such as postoperative efficacy evaluation, artificial intelligence (AI)-aided diagnosis, early disease screening, etc. The past ten years have been an important stage in the development of musculoskeletal imaging. The increase in the penetration rate of MRI equipment, the development of different diagnostic techniques, and the emergence of AI-enabled intelligent medical care have all provided opportunities for the development of musculoskeletal imaging. It is believed that shortly, musculoskeletal imaging will be able to break new ground, forge ahead, continue to improve and make more outstanding contributions to the national health strategy and the people's health.
[Keywords] sports injury;degenerative disease;tumor;fracture;musculoskeletal system imaging;magnetic resonance imaging;diffusion weighted imaging;artificial intelligence;imaging technology;early diagnosis;quantitative diagnosis;development achievements;achievements transformation;prognosis;prospect

NI Ming   YUAN Huishu*  

Department of Radiology, Peking University Third Hospital, Beijing 100191, China

Yuan HS, E-mail: huishuy@bjmu.edu.cn

Conflicts of interest   None.

Received  2022-08-26
Accepted  2022-10-14
DOI: 10.12015/issn.1674-8034.2022.10.003
Cite this article as: Ni M, Yuan HS. Opportunities and challenges of musculoskeletal imaging: Achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imaging, 2022, 13(10): 18-22, 45.DOI:10.12015/issn.1674-8034.2022.10.003

[1]
Agten CA, Honig S, Saha PK, et al. Subchondral bone microarchitecture analysis in the proximal tibia at 7-T MRI[J]. Acta Radiol, 2018, 59(6): 716-722. DOI: 10.1177/0284185117732098.
[2]
Qiu JX, Liu J, Bi ZX, et al. An investigation of 2D spine magnetic resonance imaging (MRI) with compressed sensing (CS)[J]. Skeletal Radiol, 2022, 51(6): 1273-1283. DOI: 10.1007/s00256-021-03954-x.
[3]
Gao F, Zhang R, Zhou DG, et al. A target field design of open multi-purpose RF coil for musculoskeletal MR imaging at 3T[J]. Magn Reson Imaging, 2016, 34(8): 1064-1070. DOI: 10.1016/j.mri.2016.04.018.
[4]
Li HY. Evaluation and analysis of MRI in patients with different grades of knee cartilage injury[J]. Mod Diagn Treat, 2021, 32(15): 2426-2427.
[5]
Wang YK, Jin X, Yuan HS. Three dimensional fast spin echo accelerated with compressed sensing diagnoses cartilage lesions in knee[J]. Chin J Magn Reson Imaging, 2019, 10(5): 352-355. DOI: 10.12015/issn.1674-8034.2019.05.007.
[6]
Wang DY, Luo XP, Liu XM, et al. Study of multimode MRI in the diagnosis of early-stage patellar cartilage injury[J]. Chin J Gen Pract, 2021, 19(6): 994-997. DOI: 10.16766/j.cnki.issn.1674-4152.001969.
[7]
Zhang YX, Tang GY. Progress on application of MRI T1ρ in diagnosis and treatment of osteoarthritis cartilage degeneration[J]. J Tongji Univ Med Sci, 2021, 42(5): 711-716. DOI: 10.12289/j.issn.1008-0392.20351.
[8]
Li T, Lu J, Wei KR, et al. T1 mapping combined with routine MRI imaging protocol for evaluation of articular cartilage lesion in knee[J]. J Med Imaging, 2021, 31(4): 675-679.
[9]
Zou LX, Wang HF, Zhu YJ, et al. T1rho fractional-order relaxation of human articular cartilage[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Berlin: IEEE, 2019: 4496-4499. DOI: 10.1109/EMBC.2019.8857231.
[10]
Su XL, Wan LD, Tang GY. The application of commonly used UTE-MRI techniques in quantitative study of articular cartilage[J]. Int J Med Radiol, 2021, 44(3): 314-318. DOI: 10.19300/j.2021.Z18619.
[11]
Yang X, Li ZY, Cao YP, et al. Efficacy of magnetic resonance imaging with an SPGR sequence for the early evaluation of knee cartilage degeneration and the relationship between cartilage and other tissues[J/OL]. J Orthop Surg Res, 2019, 14(1) [2022-08-25]. https://josr-online.biomedcentral.com/articles/10.1186/s13018-019-1172-3. DOI: 10.1186/s13018-019-1172-3.
[12]
Wang LG, Regatte RR. T1ρ MRI of human musculoskeletal system[J]. J Magn Reson Imaging, 2015, 41(3): 586-600. DOI: 10.1002/jmri.24677.
[13]
Liu FX, Cheng XY, Dong JL, et al. Comparison of MRI and MRA for the diagnosis of rotator cuff tears: a meta-analysis[J/OL]. Medicine (Baltimore), 2020, 99(12) [2022-08-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774601. DOI: 10.1097/MD.0000000000019579.
[14]
Jensen J, Kristensen MT, Bak L, et al. MR arthrography of the shoulder; correlation with arthroscopy[J/OL]. Acta Radiol Open, 2021, 10(11) [2022-08-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8646798. DOI: 10.1177/20584601211062059.
[15]
Roy JS, Braën C, Leblond J, et al. Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: a systematic review and meta-analysis[J]. Br J Sports Med, 2015, 49(20): 1316-1328. DOI: 10.1136/bjsports-2014-094148.
[16]
Kho J, Azzopardi C, Davies AM, et al. Direct MR arthrography of the shoulder: current practice in the UK[J]. Radiol med, 2020, 125(7): 605-608. DOI: 10.1007/s11547-020-01144-8.
[17]
Magee T. Accuracy of 3-Tesla MR and MR arthrography in diagnosis of meniscal retear in the post-operative knee[J]. Skeletal Radiol, 2014, 43(8): 1057-1064. DOI: 10.1007/s00256-014-1895-5.
[18]
Lerch S, Lorenz J, Kasperczyk A, et al. Diagnostic use of magnetic resonance imaging and magnetic resonance arthrography for intra-articular pathologies of the hip joint[J]. Z Orthop Unfall, 2020, 158(6): 586-596. DOI: 10.1055/a-1004-3396.
[19]
Nardi C, Falco L, Caracchini G, et al. A three-dimensional measurement method on MR arthrography of the hip to classify femoro-acetabular impingement[J]. Jpn J Radiol, 2021, 39(12): 1175-1185. DOI: 10.1007/s11604-021-01162-0.
[20]
Kim S, Lee GY, Lee JS. Evaluation of the triangular fibrocartilage: comparison of two-compartment wrist CT arthrography using the distal radioulnar and radiocarpal joints and unicompartment wrist CT arthrography using the radiocarpal joint[J/OL]. Br J Radiol, 2019, 92(1102) [2022-08-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774601. DOI: 10.1259/bjr.20190298.
[21]
Shu DB, Chen F, Guo WT, et al. Acute changes in knee cartilage and meniscus following long-distance running in habituate runners: a systematic review on studies using quantitative magnetic resonance imaging[J]. Skeletal Radiol, 2022, 51(7): 1333-1345. DOI: 10.1007/s00256-021-03943-0.
[22]
Jyoti R, Jain T, Damiani M. The expanding role of imaging in the diagnosis and management of sports injuries[J]. Aust J Gen Pract, 2020, 49(1/2): 12-15. DOI: 10.31128/AJGP-10-19-5107.
[23]
Fang YJ, Li W, Guo SS, et al. MRI features and related factors of ankle injury in amateur marathoners[J]. Chin J Radiol, 2019, 53(10): 813-817. DOI: 10.3760/cma.j.issn.1005-1201.2019.10.004.
[24]
Gao LX, Yuan HS. The common sports injuries of marathon and imaging changes[J]. Chin J Radiol, 2019, 53(10): 908-910. DOI: 10.3760/cma.j.issn.1005-1201.2019.10.023.
[25]
Zheng XZ, Zhou J, Tian T, et al. T2* mapping in observation on meniscus changes of males after half marathon runner[J]. Chin J Med Imaging Technol, 2021, 37(11): 1711-1714. DOI: 10.13929/j.issn.1003-3289.2021.11.028.
[26]
Chang XD, Yang P, Mu XY, et al. Evaluation of knees in asymptomatic amateur ice hockey players using 3.0-T magnetic resonance imaging: a case-control study[J]. Chin Med J (Engl), 2018, 131(9): 1038-1044. DOI: 10.4103/0366-6999.230723.
[27]
Li Z, Guan M, Sun D, et al. A novel MRI- and CT-based scoring system to differentiate malignant from osteoporotic vertebral fractures in Chinese patients[J/OL]. BMC Musculoskelet Disord, 2018, 19(1) [2022-08-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247741. DOI: 10.1186/s12891-018-2331-0.
[28]
Liu D, Lin CR, Liu BD, et al. Quantification of fat Metaplasia in the sacroiliac joints of patients with axial spondyloarthritis by chemical shift-encoded MRI: a diagnostic trial[J/OL]. Front Immunol, 2021, 12 [2022-08-25]. https://www.frontiersin.org/articles/10.3389/fimmu.2021.811672/full. DOI: 10.3389/fimmu.2021.811672.
[29]
Din RU, Cheng XG, Yang HS. Diagnostic role of magnetic resonance imaging in low back pain caused by vertebral endplate degeneration[J]. J Magn Reson Imaging, 2022, 55(3): 755-771. DOI: 10.1002/jmri.27858.
[30]
Duan Y. Comparison of X-ray plain film, CT and MRI in diagnosis of primary bone tumors of limbs[J]. Chin J Cancer Prev Treat, 2020, 27(S1): 157, 159.
[31]
Chen XL, An GL, Kou MQ, et al. Research of dynamic contrast enhanced magnetic resonance imaging and CT in differential diagnosis of benign and malignant bone tumors[J]. J Med Imaging, 2020, 30(10): 1902-1907.
[32]
Duan SH, Ren CP. The value of MRI in the diagnosis of bone tumors and soft tissue tumors[J]. Chin J CT MRI, 2018, 16(5): 131-133, 150. DOI: 10.3969/j.issn.1672-5131.2018.05.040.
[33]
Cui J, Xia X, Tian N, et al. CT and MRI features of giant cell tumours with prominent aneurysmal bone cysts in the extremities: a comparison with primary aneurysmal bone cysts[J/OL]. Clin Radiol, 2021, 76(2) [2022-08-25]. https://linkinghub.elsevier.com/retrieve/pii/S0009-9260(20)30394-9. DOI: 10.1016/j.crad.2020.09.004.
[34]
Wang QZ, Zhang EL, Xing XY, et al. Clinical significance of preoperative CT and MR imaging findings in the prediction of postoperative recurrence of spinal giant cell tumor of bone[J]. Orthop Surg, 2021, 13(8): 2405-2416. DOI: 10.1111/os.13173.
[35]
Liu Z, Su ZH, Wang M, et al. Computerized characterization of spinal structures on MRI and clinical significance of 3D reconstruction of lumbosacral intervertebral foramen[J/OL]. Pain Physician, 2022, 25(1) [2022-08-25]. https://www.painphysicianjournal.com/linkout?issn=&vol=25&page=E27.
[36]
Pang SM, Pang CL, Su ZH, et al. DGMSNet: Spine segmentation for MR image by a detection-guided mixed-supervised segmentation network[J/OL]. Med Image Anal, 2022, 75 [2022-08-25]. https://www.sciencedirect.com/science/article/abs/pii/S1361841521003066. DOI: 10.1016/j.media.2021.102261.
[37]
Yeh YC, Weng CH, Huang YJ, et al. Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs[J/OL]. Sci Rep, 2021, 11(1) [2022-08-25]. https://www.nature.com/articles/s41598-021-87141-x. DOI: 10.1038/s41598-021-87141-x.
[38]
Yang W, Ye Q, Ming S, et al. Feasibility of automatic measurements of hip joints based on pelvic radiography and a deep learning algorithm[J/OL]. Eur J Radiol, 2020, 132 [2022-08-25]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(20)30492-7. DOI: 10.1016/j.ejrad.2020.109303.
[39]
Zhang B, Yu KY, Ning ZY, et al. Deep learning of lumbar spine X-ray for osteopenia and osteoporosis screening: a multicenter retrospective cohort study[J/OL]. Bone, 2020, 140 [2022-08-25]. https://www.sciencedirect.com/science/article/abs/pii/S8756328220303410. DOI: 10.1016/j.bone.2020.115561.
[40]
Shen HT, Huang JW, Zheng QQ, et al. A deep-learning-based, fully automated program to segment and quantify major spinal components on axial lumbar spine magnetic resonance images[J/OL]. Phys Ther, 2021, 101(6) [2022-08-25]. https://academic.oup.com/ptj/article/101/6/pzab041/6124778. DOI: 10.1093/ptj/pzab041.
[41]
Liu XY, Pu RJ, Liang J, et al. The value of T2 mapping texture features of 3.0 T MRI in grading cartilage injury of knee osteoarthritis[J]. Chin J Magn Reson Imaging, 2021, 12(7): 34-38. DOI: 10.12015/issn.1674-8034.2021.07.007.
[42]
Pan K, Liu QQ, Tang LL, et al. Study on acceleration efficiency and image quality of artificial intelligence compressed sensing and compressed sensing in knee MRI[J]. Chin J Magn Reson Imaging, 2022, 13(5): 94-98. DOI: 10.12015/issn.1674-8034.2022.05.017.
[43]
Wang PX, Liu XY, Xu J, et al. Deep learning for diagnosing osteonecrosis of the femoral head based on magnetic resonance imaging[J/OL]. Comput Methods Programs Biomed, 2021, 208 [2022-08-25]. https://www.sciencedirect.com/science/article/abs/pii/S0169260721003035. DOI: 10.1016/j.cmpb.2021.106229.
[44]
Zhang LY, Li MF, Zhou YJ, et al. Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard[J]. J Magn Reson Imaging, 2020, 52(6): 1745-1752. DOI: 10.1002/jmri.27266.
[45]
Ni M, Wen XY, Chen W, et al. A deep learning approach for MRI in the diagnosis of labral injuries of the hip joint[J]. J Magn Reson Imaging, 2022, 56(2): 625-634. DOI: 10.1002/jmri.28069.
[46]
Gao F, Liu S, Zhang XD, et al. Automated grading of lumbar disc degeneration using a push-pull regularization network based on MRI[J]. J Magn Reson Imaging, 2021, 53(3): 799-806. DOI: 10.1002/jmri.27400.
[47]
Li YC, Chen HH, Horng-Shing Lu H, et al. Can a deep-learning model for the automated detection of vertebral fractures approach the performance level of human subspecialists? [J]. Clin Orthop Relat Res, 2021, 479(7): 1598-1612. DOI: 10.1097/CORR.0000000000001685.
[48]
Qiu DF, Zhang SX, Liu Y, et al. Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning[J/OL]. Comput Methods Programs Biomed, 2020, 187 [2022-08-15]. https://www.sciencedirect.com/science/article/abs/pii/S0169260719312416. DOI: 10.1016/j.cmpb.2019.105059.

PREV Opportunities and challenges of pediatric magnetic resonance imaging: Achievements and prospects over the past decade in China
NEXT Opportunities and challenges of functional magnetic resonance imaging for human brain research: Achievements and prospects over the past decade in China
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn