Share this content in WeChat
Specialist Forums
Opportunities and challenges of pediatric magnetic resonance imaging: Achievements and prospects over the past decade in China
LI Xin  SHAO Jianbo  NING Gang  PENG Xuehua  GUO Yu 

Cite this article as: Li X, Shao JB, Ning G, et al. Opportunities and challenges of pediatric magnetic resonance imaging: Achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imaging, 2022, 13(10): 5-17. DOI:10.12015/issn.1674-8034.2022.10.002.

[Abstract] The "Health China 2030" outlines is focusing on the whole population and the whole life cycle for building a healthy China, strengthening health services for key populations and improving maternal and child health. MRI is a non-invasive, non-ionizing radiation imaging method with good soft tissue contrast, is playing an irreplaceable role in the diagnosis of pediatric diseases. With the improvement of equipment, technological development and innovative research of radiologists, pediatric MRI in China has entered a high-speed development stage in the past ten years. MRI has achieved excellent results in fetal MRI, pediatric central nervous system MRI, pediatric chest MRI, pediatric abdominal MRI, pediatric musculoskeletal MRI and artificial intelligence (AI), providing reference information and playing an important value for the diagnosis and treatment of pediatric diseases and prognosis assessment. The future of pediatric MRI: (1) To further optimize the sequence of pediatric MRI examination, reduce the scanning time and improve the compliance of pediatric MRI examination, and develop pediatric-specific MRI, pediatric-specific receiving coilto achieve safe and high-contrast silent scanning for infants and children; (2) To establish the MRI database and related standard values or intervals for normal children in China as soon as possible; (3) To carry out multi-center collaborative research and jointly compile the Expert Consensus Series on MRI for Pediatric Disease Spectrum in China actively; (4) To conduct MRI research in key areas such as birth defects, fetus and placenta, pediatric brain science, pediatric tumor, and genetic metabolism; (5) To actively engaged in research and clinical promotion of pediatric MRI AI. The purpose of this review is to summarize the achievements of pediatric MRI in China in the past ten years, analyze the current situation, identify gaps, and propose future directions to promote high-quality development of pediatric imageology in China.
[Keywords] pediatrics;fetal;central nervous system;abdominal tumors;acute kidney injury;renal function;fatty liver disease;avascular necrosis of the femoral head;developmental dysplasia of the hip;juvenile idiopathic arthritis;brachial plexus nerve;cardiovascular magnetic resonance;magnetic resonance enterography;artificial intelligence;magnetic resonance imaging

LI Xin1   SHAO Jianbo2*   NING Gang3*   PENG Xuehua2   GUO Yu2  

1 Department of Radiology, Tianjin Second People's Hospital, Tianjin 300192, China

2 Department of Imaging Center, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430014, China

3 Department of Radiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu 610041, China

Shao JB, E-mail: Ning G, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Key R&D Plan Key Special Projects of Digital Diagnostic and Medical Equipment R&D (No. 2017YFC09000).
Received  2022-09-15
Accepted  2022-10-14
DOI: 10.12015/issn.1674-8034.2022.10.002
Cite this article as: Li X, Shao JB, Ning G, et al. Opportunities and challenges of pediatric magnetic resonance imaging: Achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imaging, 2022, 13(10): 5-17. DOI:10.12015/issn.1674-8034.2022.10.002.

Zhu M. Sixty years review and prospect of pediatric medical imaging in China[J] Chin J Radiol, 2013, 47 (S1): 45-47.
Xiao HC, Wu GC, Jin K, et al. Application value of HASTE sequence in fetal brain magnetic resonance imaging[J]. J Clin Res, 2012, 29(12): 2412-2413.
Shi YL, Wang CB, Liu W. Application of MR imaging with fast-imaging employing steady-state acquisition sequence in normal fetus[J]. Jiangsu Med J, 2012, 38(14): 1686-1688, 1612. DOI: 10.19460/j.cnki.0253-3685.2012.14.028.
Pediatric Group of Radiological Branch of Chinese Medical Association, Radiology Group of Pediatric Branch of Chinese Medical Association. Consensus of Chinese experts on fetal MRI[J]. Chin J Radiol, 2020, 54(12): 1153-1161. DOI: 10.3760/cma.j.cn112149-20200605-00779.
Wang CH, Li XB, Sui He, et al. Application of three dimensional MR virtual endoscopy reconstruction in displaying fetal face[J]. Radiol Pract, 2018, 33(12): 1330-1334. DOI: 10.13609/j.cnki.1000-0313.2018.12.020.
Cai XY, Chen X, Shan RQ, et al. Susceptibility weighted imaging in evaluation of the fetal vertebra and vertebral anomalies[J]. Chin J Radiol, 2018, 52(2): 119-124. DOI: 10.3760/cma.j.issn.1005-1201.2018.02.008.
Zhou N, Liu HS, Liu ZQ, et al. The value of three-dimensional susceptibility weighted imaging in spinal deformity of fetus[J]. J Pract Radiol, 2021, 37(6): 1000-1002. DOI: 10.3969/j.issn.1002-1671.2021.06.031.
Li HE, Li CL, Liu CH, et al. Comparative study of B-FFE, DWI and SWI sequences in the measurement of femoral length in fetal magnetic resonance imaging[J]. Radiol Pract, 2021, 36(11): 1430-1434. DOI: 10.13609/j.cnki.1000-0313.2021.11.018.
Ma DT, Cui H, Li XJ, et al. Feasibility study of multiplane reformation to show the long axis of femur after negative interval scanning with 3.0 T MR TrueFISP sequence[J]. J Clin Radiol, 2022, 41(3): 562-566. DOI: 10.13437/j.cnki.jcr.2022.03.006.
Dong SZ, Zhu M, Zhong YM, et al. Diagnosis of fetal congenital cystic adenomatoid malformation of the lung by MRI[J]. Radiol Pract, 2011, 26(2): 172-175. DOI: 10.13609/j.cnki.1000-0313.2011.02.002.
Dong SZ, Zhu M, Li F, et al. Potential role of fetal congenital heart disease with magnetic resonance imaging: preliminary experience[J/OL]. Chin J Clin Electron Ed, 2012, 6(22): 7156-7160 [2022-09-14]. DOI: 10.3877/cma.j.issn.1674-0785.2012.22.038.
Dong SZ, Zhu M. Magnetic resonance imaging of fetal persistent left superior vena cava[J]. Sci Rep, 2017, 7(1): 1-9. DOI: 10.1038/s41598-017-04591-y.
Dong SZ, Zhu M, Ji H, et al. Fetal cardiac MRI: a single center experience over 14-years on the potential utility as an adjunct to fetal technically inadequate echocardiography[J]. Sci Rep, 2020, 10(1): 1-10. DOI: 10.1038/s41598-020-69375-3.
Liu K, Dong SZ. MRI measurements for normal fetal aortic arch isthmus diameter and ductus arteriosus diameter between 20 to 36 gestational weeks[J]. Chin J Perinat Med, 2021, 24(3): 220-225. DOI: 10.3760/cma.j.cn113903-20200813-00804.
Zhang X, Zhu M, Dong SZ. Prenatal assessment of the cardiovascular structure and brain development of fetuses with tetralogy of Fallot on fetal MRI[J]. Chin J Radiol, 2022(5): 488-493. DOI: 10.3760/cma.j.cn112149-20210630-00617.
Lu YY, Huang QY, Zhu JL, et al. Study of MRI with three-dimensional fast imaging employing steady-state acquisition and diffusion weighted imaging in the evaluation of fetal renal development[J]. Chin J Radiol, 2016, 50(11): 874-877. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.015.
Peng X, Song T, Zhang WS, et al. Fetal ventricles and posterior cranial fossa development in second and third trimesters and their variations with gestational age: a quantitative MRI study[J]. Chin J Perinat Med, 2021, 24(11): 813-818. DOI: 10.3760/cma.j.cn113903-20200902-00915.
Xia F, Guo Y, He H, et al. Reference biometry of foetal brain by prenatal MRI and the distribution of measurements in foetuses with ventricular septal defect[J]. Ann Med, 2021, 53(1): 1428-1437. DOI: 10.1080/07853890.2021.1969590.
Pan C, Xia LM, Zhu WZ, et al. Functional MR imaging in the study of working memory of frontal-parietal lobe in children[J]. Radiol Pract, 2011, 26(1): 9-12. DOI: 10.13609/j.cnki.1000-0313.2011.01.013.
Huang H, Shu N, Mishra V, et al. Development of human brain structural networks through infancy and childhood[J]. Cereb Cortex, 2015, 25(5): 1389-1404. DOI: 10.1093/cercor/bht335.
Cao M, He Y, Dai ZJ, et al. Early development of functional network segregation revealed by connectomic analysis of the preterm human brain[J]. Cereb Cortex, 2016, 27(3): 1949-1963. DOI: 10.1093/cercor/bhw038.
Wang QS, Xu YH, Zhao TD, et al. Individual uniqueness in the neonatal functional connectome[J]. Cereb Cortex, 2021, 31(8): 3701-3712. DOI: 10.1093/cercor/bhab041.
Xu YH, Cao M, Liao XH, et al. Development and emergence of individual variability in the functional connectivity architecture of the preterm human brain[J]. Cereb Cortex, 2018, 29(10): 4208-4222. DOI: 10.1093/cercor/bhy302.
Zhang H, Kang HY, Zhao XN, et al. Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development[J]. Eur Radiol, 2016, 26(10): 3368-3376. DOI: 10.1007/s00330-015-4188-z.
Ning N, Zhang L, Gao J, et al. Assessment of iron deposition and white matter maturation in infant brains by using enhanced T2 star weighted angiography (ESWAN): R2* versus phase values[J/OL]. PLoS One, 2014, 9(2) [2022-09-14]. DOI: 10.1371/journal.pone.0089888.
Tang SL, Cheng Z, He L, et al. The application of quantitative susceptibility imaging in the assessment of iron content in brain area of normal preschool children[J]. J Clin Radiol, 2021, 40(2): 335-340. DOI: 10.13437/j.cnki.jcr.2021.02.030.
Li XY, Huang MZ, Zhang X, et al. Effect of DRD4 receptor-616 C/G polymorphism on white matter microstructure in normal adolescents, a MRI study using neurite orientation dispersion and density imaging technique[J]. Chin J Magn Reson Imaging, 2019, 10(11): 840-844. DOI: 10.12015/issn.1674-8034.2019.11.009.
Yang S, Dong X, Wang SH, et al. Altered patterns of functional connectivity of posterior cingnlate cortex on resting-state magneticresonance imaging in children with attention-deficit or hyperactivity disorder[J]. Natl Med J China, 2013(24): 1881-1885. DOI: 10.3760/cma.j.issn.0376-2491.2013.24.007.
Jiang KH, Shen HJ, Li HX, et al. Brain imaging studies in children with attention-deficit hyperactivity disorder revealed by resting-state fMRI degree centrality analysis[J]. Chin J Behav Med Brain Sci, 2014, 23(2): 133-135. DOI: 10.3760/cma.j.issn.1674-6554.2014.02.011.
Xie N, Sun LW, Xu SJ, et al. A study of rest-stating functional magnetic resonance imaging in children with attention deficit hyperactivity disorder[J]. Chin J Magn Reson Imaging, 2016, 7(6): 412-416. DOI: 10.12015/issn.1674-8034.2016.06.003.
Wang MX, Lei D, Zhang H, et al. Brain fMRI in combined and inattentive subtypes of attention deficit hyperactivity disorder during Go/Nogo task[J]. Chin J Med Imaging Technol, 2016, 32(5): 678-682. DOI: 10.13929/j.1003-3289.2016.05.011.
Li HJ, Geng B, Wang S, et al. Mechanism of cerebral blood flow of sustained attention dysfunction in patients with attention-deficit hyperactivity disorder[J]. Chin J Med Imaging, 2017, 25(3): 190-195. DOI: 10.3969/j.issn.1005-5185.2017.03.008.
Liao Y, Qu HB, Cai XT, et al. Brain cortex thickness alteration in Tourette syndrome in children: a magnetic resonance imaging study[J]. Diagn Imaging & Interv Radiol, 2018, 27(1): 33-39. DOI: 10.3969/j.issn.1005-8001.2018.01.006.
Wang HW, Xu JP, Hu QM, et al. Alterations of gyrification-based networks in children with autism spectral disorders[J]. Chin J CT MRI, 2019, 17(8): 11-14, 153. DOI: 10.3969/j.issn.1672-5131.2019.08.004.
Dai HY, Li QY, Li SK, et al. Quantitative 1H-MRS study of metabolite characteristics of autism spectrum disorders in basal Ganglia regions[J]. Chin J Magn Reson Imaging, 2017, 8(1): 8-12. DOI: 10.12015/issn.1674-8034.2017.01.003.
Kang QQ, Li X, Tong GL, et al. Magnetic resonance spectroscopy features of the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder: a prospective study[J]. Chin J Contemp Pediatr, 2021, 23(12): 1250-1255. DOI: 10.7499/j.issn.1008-8830.2108137.
Cheng Z, Tang SL, Zhang Y, et al. Three-dimensional arterial spin labeling perfusion imaging shows cerebral blood flow decline in some brain regions in preschool autistic children[J]. Chin J Magn Reson Imaging, 2022, 13(1): 11-14, 20. DOI: 10.12015/issn.1674-8034.2022.01.003.
Zhu K, Zeng LH, Zhao XL, et al. Application of 3.0 T MRI 2D-CSI 1H-MRS in children with temporal lobe epilepsy without morphological changes[J]. Chin J Magn Reson Imaging, 2020, 11(12): 1097-1103. DOI: 0.12015/issn.1674-8034.2020.12.004.
Guo HH, Huang WH, Huang LJ, et al. Study on childhood generalized tonic seizures using regional homogeneity analysis[J]. Chin J Clin Anat, 2016, 34(3): 278-284. DOI: 10.13418/j.issn.1001-165x.2016.03.009.
Hu ZQ, Zeng HW, Liao JX, et al. A resting-state functional magnetic resonance imaging study of altered brain function of benign epilepsy in children with central-temporal spikes[J]. Chin J Appl Clin Pediatr, 2020, 35(4): 285-288. DOI: 10.3760/cma.j.cn101070-20190731-00695.
Zhang HB, Li YH, Zhou ZY, et al. Value of diffusion weighted MR imaging in determining the WHO grade of intracranial tumors in children[J]. Radiol Pract, 2011, 26(4): 372-375. DOI: 10.13609/j.cnki.1000-0313.2011.04.033.
Luo B, Miao SH, He L, et al. Study of visual conduction pathway by DTI in 24 children with sellar tumors[J]. Chin J Clin Neurosurg, 2019, 24(3): 129-131. DOI: 10.13798/j.issn.1009-153X.2019.03.001.
Chen J, Li X, Wang CX, et al. Diagnostic value of susceptibility weighted imaging with SWAN sequence in intracranial multiple cavernous angiomas in children[J]. Radiol Pract, 2015, 30(12): 1159-1163. DOI: 10.13609/j.cnki.1000-0313.2015.12.002.
Wang F, Shao JB, Zhang WH, et al. Clinical value of 3D ASL MRI in diagnosis of cerebral vascular diseases in children[J]. Radiol Pract, 2015, 30(12): 1177-1181. DOI: 10.13609/j.cnki.1000-0313.2015.12.006.
Wang YT, Han C, Zuo ZW, et al. Quantitative evaluation of hemodynamics changes in childhood moyamoya disease after revascularization surgery using perfusion-weighted MR imaging[J]. Chin J Magn Reson Imaging, 2015, 6(12): 898-903. DOI: 10.3969/j.issn.1674-8034.2015.12.004.
Li XJ, Gao J, Wang MM, et al. Rapid and reliable tract-based spatial statistics pipeline for diffusion tensor imaging in the neonatal brain: applications to the white matter development and lesions[J]. Magn Reson Imaging, 2016, 34(9): 1314-1321. DOI: 10.1016/j.mri.2016.07.011.
Li XJ, Yang J, Gao J, et al. A robust post-processing workflow for datasets with motion artifacts in diffusion kurtosis imaging[J/OL]. PLoS One, 2014, 9(4) [2022-09-15]. DOI: 10.1371/journal.pone.0094592.
Liang GH. Comparison of magnetic resonance 3D-SPACE series and 3D-CISS series in children with obstructive Hydrocephalus[J]. J Math Med, 2019, 32(10): 1472-1473. DOI: 10.3969/j.issn.1004-4337.2019.10.023.
Chen J, Li X, Wang CX, et al. Application value of MR contrast-enhanced FLAIR in the diagnosis of meningeal diseases in children[J]. J Clin Radiol, 2011, 30(9): 1353-1357. DOI: 10.13437/j.cnki.jcr.2011.09.019.
Gao YZ, Cheng H, Lü YQ, et al. Diagnostic value of isotropic three-dimensional fast spin echo-CUBE enhancement sequence in children with purulent meningitis[J]. Chin J Radiol, 2019, 53(7): 599-602. DOI: 10.3760/cma.j.issn.1005-1201.2019.07.014.
Song YR, Sheng M. Diagnostic value of 3.0 T magnetic resonance inner ear imaging in children with congenital acoustic nerve developmental malformation[J]. Jilin Med J, 2017, 38(12): 2338-2340. DOI: 10.3969/j.issn.1004-0412.2017.12.065.
Yin SG, Yang X. Study of the application of RESOLVE sequence in diffuse weighted imaging of children's heads[J]. J Med Imaging, 2019, 29(9): 1454-1457.
Wen ling‐yi, Yang zhi‐gang, Li zhen‐lin, et al. Accurate identification of myocardial viability after myocardial infarction with novel Manganese chelate‐based MR imaging[J/OL]. NMR Biomed, 2019, 32(11) [2022-09-15]. DOI: 10.1002/nbm.4158.
Zhou ZQ, Wen LY, Fu C, et al. Association of left ventricular systolic dysfunction with coronary artery dilation in Kawasaki disease patients: assessment with cardiovascular magnetic resonance[J/OL]. Eur J Radiol, 2021, 145 [2022-09-15]. DOI: 10.1016/j.ejrad.2021.110039.
Zou Q, Xu HY, Fu C, et al. Utility of single-shot compressed sensing cardiac magnetic resonance cine imaging for assessment of biventricular function in free-breathing and arrhythmic pediatric patients[J]. Int J Cardiol, 2021, 338: 258-264. DOI: 10.1016/j.ijcard.2021.06.043.
Chen BH, Zhong YM, Sun AM, et al. Diagnostic value of cardiovascular magnetic resonance in children with myocarditis[J]. Chin J Radiol, 2015(6): 435-439. DOI: 10.3760/cma.j.issn.1005-1201.2015.06.009.
Liu YJ, Han B, Wang CY, et al. Diagnostic value of myocardial perfusion imaging and delayed enhancement scan examination by cardiac magnetic resonance in children with viral myocarditis[J]. Chin J Appl Clin Pediatr, 2014, 29(13): 974-978. DOI: 10.3760/j.issn.2095-428X.2014.13.006.
Sun AM, Zhong YM, Wang Q, et al. Application of high time-resolved contrast-enhanced MR angiography in postoperative follow-up study of children with congenital heart diseases[J]. Chin J Radiol, 2015, 49(9): 685-689. DOI: 10.3760/cma.j.issn.1005-1201.2015.09.010.
Peng YF, Hu LW, Sun AM, et al. Application of three dimensional balanced steady state free precession cine MRI in evaluation of cardiac function in children with repaired tetralogy of Fallot[J]. Chin J Radiol, 2020, 54(7): 649-654. DOI: 10.3760/cma.j.cn112149-20190619-00500.
Hu LW, Ouyang RZ, Liu XL, et al. Impairment of left atrial function in pediatric patients with repaired tetralogy of Fallot: a cardiovascular magnetic resonance imaging study[J]. Int J Cardiovasc Imaging, 2021, 37(11): 3255-3267. DOI: 10.1007/s10554-021-02302-3.
Ouyang RZ, Leng S, Sun AM, et al. Detection of persistent systolic and diastolic abnormalities in asymptomatic pediatric repaired tetralogy of Fallot patients with preserved ejection fraction: a CMR feature tracking study[J]. Eur Radiol, 2021, 31(8): 6156-6168. DOI: 10.1007/s00330-020-07643-6.
Yao XF, Hu LW, Peng YF, et al. Right and left ventricular function and flow quantification in pediatric patients with repaired tetralogy of Fallot using four-dimensional flow magnetic resonance imaging[J]. BMC Med Imaging, 2021, 21(1): 1-11. DOI: 10.1186/s12880-021-00693-2.
Yao Q, Hu XH, Shen QL, et al. Evaluation of aorta's compliance after repair of coarctation of aorta using pulse wave velocity of MRI[J]. J Pract Radiol, 2017, 33(10): 1584-1587, 1604. DOI: 10.3969/j.issn.1002-1671.2017.10.023.
Xu YQ, Wang L, Gong Y, et al. Value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging in differentiating benign and malignant pediatric abdominal tumors[J]. Chin J Evid Based Pediatr, 2017, 12(4): 251-256. DOI: 10.3969/j.issn.1673-5501.2017.04.003.
Jia X, Wang WQ, Liang JW, et al. Risk stratification of abdominal tumors in children with amide proton transfer imaging[J]. Eur Radiol, 2022, 32(4): 2158-2167. DOI: 10.1007/s00330-021-08376-w.
Lin FF, Gan YG, Sun LW, et al. Investigation of apparent diffusion coefficient of solid abdominal organs in preschool healthy children[J]. J China Clin Med Imaging, 2014, 25(6): 413-416.
Cai QF, Jin K, Wu TH, et al. Preliminary evaluation of MR diffusion tensor imaging in children with acute renal injury[J]. J Chin Physician, 2020, 22(2): 224-227, 232. DOI: 10.3760/cma.j.issn.1008-1372.2020.02.015.
Peng CY, Wu GC. Application of MRU in children's urinary tract diseases[J]. China Health Ind, 2012, 9(22): 152. DOI: 10.16659/j.cnki.1672-5654.2012.22.071.
Wen Y, Peng Y, Li ML, et al. Evaluation value of functional magnetic resonance urography on unilateral renal function in children with hy-dronephrosis[J]. Chin J Appl Clin Pediatr, 2016, 31(23): 1799-1802. DOI: 10.3760/cma.j.issn.2095-428X.2016.23.010.
Lai C, Zhou HC. Clinical value of MR enterography in pediatric patients[J]. Chin J Magn Reson Imaging, 2012, 3(3): 188-193. DOI: 10.3969/j.issn.1674-8034.2012.03.007.
Wang B. Application of multiple sequences of magnetic resonance enterography in the examination of intestinal diseases in children[J]. J Pract Med Imaging, 2018(5): 419-421. DOI: 10.16106/j.cnki.cn14-1281/r.2018.05.019.
Cao WG, Zhao YZ, Liang YW, et al. Multi-modal magnetic resonance imaging in the evaluation of children with nonalcoholic fatty liver disease[J]. J Clin Radiol, 2020, 39(2): 386-389. DOI: 10.13437/j.cnki.jcr.2020.02.036.
Wang DD, Xiang YH, Gan Q, et al. Quantitative evaluation of liver fat content in obese children via magnetic resonance multi-echo Dixon technique[J]. Chin J Med Imaging, 2022, 30(4): 368-372.
Wu JZ, Sheng M, Guo WL. Application of different respiratory gating methods in MRCP examination of children[J]. J Med Theory Pract, 2018, 31(10): 1518-1519. DOI: 10.19381/j.issn.1001-7585.2018.10.066.
Yang X, Yang KH, Chen ZP, et al. Study on the parameter optimization of 3D-SPACE sequence in MRCP for children[J]. J Med Imaging, 2021, 31(5): 799-802.
Yang KH, Zheng B. The clinical application of abdominal scan with Radial 3D VIBE under free breathing of children in obtaining T1-weighted images[J]. J Med Imaging, 2018, 28(7): 1123-1125.
Yang KH, Chen ZP, Yin SG, et al. Application of 3D free-breathing Star VIBE sequence in abdominal enhanced MR in children[J]. Chin J Med Imaging Technol, 2019, 35(4): 601-604. DOI: 10.13929/j.1003-3289.201809031.
Zhou HD, Meng Y, Lu Z, et al. Progress in imaging diagnosis of osteonecrosis of the femoral head after developmental dysplasia of the hip[J]. Chin J Magn Reson Imaging, 2018, 9(9): 711-715. DOI: 10.12015/issn.1674-8034.2018.09.013.
Wu QQ, Liu HS, Chen YK, et al. Comparative study of four types of 3D sequences at displaying the structure of both hip joints and measuring each acetabular index in children[J]. J China Clin Med Imaging, 2019, 30(1): 53-56.
Wang LY, Wang CX, Yan Z, et al. MRI quantitative measurement of normal hip development in children[J]. Chin J Med Imaging Technol, 2014, 30(12): 1909-1912. DOI: 10.13929/j.1003-3289.2014.12.054.
Jia HH, Wang L, Chang Y, et al. Assessment of irreducible aspects in developmental hip dysplasia by magnetic resonance imaging[J]. BMC Pediatr, 2020, 20(1): 1-7. DOI: 10.1186/s12887-020-02420-2.
Xu D, Tang XM. Advances and suggestions for option in imaging for juvenile idiopathic arthritis[J]. Chin J Pediatr, 2020, 58(12): 1024-1028. DOI: 10.3760/cma.j.cn112140-20200527-00550.
Yang Y, Tao R, Yi XL, et al. MRI-based investigation of characteristics and outcome of knee bone marrow edema in children with juvenile idiopathic arthritis[J]. Chin J Radiol, 2022(6): 650-655. DOI: 0.3760/cma.j.cn112149-20210706-00640.
Zhang XF, Qin Y, Zhu K, et al. Whole body diffusion-weighted MR imaging in children of different age groups[J]. Radiol Pract, 2014, 29(8): 864-866. DOI: 10.13609/j.cnki.1000-0313.2014.08.004.
Zhao LL, Zhao JS, Ma CY, et al. Imaging effect of 3D-nerve sequence on brachial plexus in neonates[J]. Chin J Med Imaging Technol, 2019, 35(11): 1733-1736. DOI: 10.13929/j.1003-3289.201901141.
The application development and prospect of artificial intelligence (AI) in medical imaging-to meet the era of AI 2.0[J]. China Med Devices, 2022, 37(4): 181.
Li ZJ, Yu JH, Wang YY, et al. DeepVolume: brain structure and spatial connection-aware network for brain MRI super-resolution[J]. IEEE Trans Cybern, 2021, 51(7): 3441-3454. DOI: 10.1109/TCYB.2019.2933633.
Jiao Y, Chen R, Ke XY, et al. Predictive models of autism spectrum disorder based on brain regional cortical thickness[J]. NeuroImage, 2010, 50(2): 589-599. DOI: 10.1016/j.neuroimage.2009.12.047.
Peng XL, Lin P, Zhang TS, et al. Extreme learning machine-based classification of ADHD using brain structural MRI data[J/OL]. PLoS One, 2013, 8(11) [2022-09-14]. DOI: 10.1371/journal.pone.0079476.
Zhu L, Zhang LY, Han YT, et al. Study of attention deficit/hyperactivity disorder classification based on convolutional neural networks[J]. J Biomed Eng, 2017, 34(1): 99-105. DOI: 10.7507/1001-5515.201606058.
Huang JJ, Xu JH, Kang L, et al. Identifying epilepsy based on deep learning using DKI images[J/OL]. Front Hum Neurosci, 2020, 14[2022-09-14]. DOI: 10.3389/fnhum.2020.590815.
Chen SH, Zhang J, Ruan XL, et al. Voxel-based morphometry analysis and machine learning based classification in pediatric mesial temporal lobe epilepsy with hippocampal sclerosis[J]. Brain Imaging Behav, 2020, 14(5): 1945-1954. DOI: 10.1007/s11682-019-00138-z.
Chen XQ, Lu R, Zhao F. Convolutional neural network-processed MRI images in the diagnosis of plastic bronchitis in children[J/OL]. Contrast Media Mol Imaging, 2021, 2021 [2022-09-14]. DOI: 10.1155/2021/2748830.
Peng XH, Shao JB, Guo Y, et al. MRI-based radiomics for differential diagnosis of medulloblastoma and ependymoma in children[J]. J Clin Radiol, 2021, 40(4): 779-782. DOI: 10.13437/j.cnki.jcr.2021.04.034.
Wang SJ, Zhang W, He JP, et al. Classification of the types of pediatric posterior fossa brain tumors based on routine MRI using wavelet transformation analysis of whole tumor[J]. Natl Med J China, 2020(3): 178-181. DOI: 10.3760/cma.j.issn.0376-2491.2020.03.004.
Zheng H, Li JN, Liu HH, et al. Clinical-MRI radiomics enables the prediction of preoperative cerebral spinal fluid dissemination in children with medulloblastoma[J]. World J Surg Oncol, 2021, 19(1): 1-10. DOI: 10.1186/s12957-021-02239-w.
Jiang XJ, Jin K, Gao B. Establishment of Nomogram prediction model for pathological classification of pediatric brain tumors by multimodal magnetic resonance imaging[J]. J China Clin Med Imaging, 2021, 32(5): 305-309, 314. DOI: 10.12117/jccmi.2021.05.001.
Li HT, Yan GH, Luo WR, et al. Mapping fetal brain development based on automated segmentation and 4D brain atlasing[J]. Brain Struct Funct, 2021, 226(6): 1961-1972. DOI: 10.1007/s00429-021-02303-x.
Ding M, Zheng H, Feng Y, et al. MRI characteristics of diffuse midline gliomas with H3 K27M mutation in children[J]. Journal of Practical Radiology, 2020, (3): 444-447.
Wu CQ, Zheng H, Wu HT, et al. Differentiation between H3K27M mutation and wild-type diffuse intrinsic pontine glioma in children on MRI[J]. Radiol Pract, 2021, 36(1): 47-52. DOI: 10.13609/j.cnki.1000-0313.2021.01.010.
Xie LX, Ning G. Imaging evaluation of immature lung and pulmonary diseases in premature infants[J/OL]. Chin J Obstet & Gynecol Pediatr Electron Ed, 2019, 15(3): 343-348 [2022-09-14]. DOI: 10.3877/cma.j.issn.1673-5250.2019.03.016.
Wu CQ, Zheng H, Li JN, et al. MRI-based radiomics signature and clinical factor for predicting H3K27M mutation in pediatric high-grade gliomas located in the midline of the brain[J]. Eur Radiol, 2022, 32(3): 1813-1822. DOI: 10.1007/s00330-021-08234-9.
Liu Y, Huo R, Liu JF, et al. Evaluation of image quality of brain injury in preterm infants by pediatric 3.0 T special magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2022, 13(3): 61-65. DOI: 10.12015/issn.1674-8034.2022.03.012.
Song Y, Ning G, Li XS, et al. Application of MRI ultrashort echo time and gradient echo sequence in the lungs of preterm infants[J]. Chin J Magn Reson Imaging, 2022, 13(6): 102-107. DOI: 10.12015/issn.1674-8034.2022.06.020.
Liu Y, Huo R, Wang Z, et al. Research progress of arterial spin labeling imaging in early diagnosis and prognosis evaluation of brain injury in premature infants[J]. Chin J Magn Reson Imaging, 2021, 12(9): 91-94. DOI: 10.12015/issn.1674-8034.2021.09.023.

PREV Opportunities and challenges of magnetic resonance imaging: Achievements and prospects over the past decade in China
NEXT Opportunities and challenges of musculoskeletal imaging: Achievements and prospects over the past decade in China

Tel & Fax: +8610-67113815    E-mail: