Share:
Share this content in WeChat
X
Review
The latest research progress of functional MRI in traumatic cartilage injury of ankle joint
GAO Yiyang  LI Xiangsheng 

Cite this article as: Gao YY, Li XS. The latest research progress of functional MRI in traumatic cartilage injury of ankle joint[J]. Chin J Magn Reson Imaging, 2022, 13(9): 167-170. DOI:10.12015/issn.1674-8034.2022.09.040.


[Abstract] Ankle trauma often causes early injury of articular cartilage. If the articular cartilage injury is not diagnosed early, it may lead to further deterioration of the condition and induce a decrease or impairment of the patient's mobility. At present, it is easy to miss the diagnosis of cartilage injury by conventional MRI scanning, and it is difficult to quantitatively evaluate the degree of cartilage injury. However, functional MRI (fMRI) can reflect the pathophysiological abnormalities of articular cartilage, and it has a high application prospect in early diagnosis and severity grading of ankle cartilage injury. To address this issue, this paper reviews the latest advances in the clinical application of fMRI techniques of ankle cartilage, in order to broaden the application scope of fMRI in early diagnosis and curative effect prediction of ankle cartilage.
[Keywords] ankle joint;articular cartilage;trauma;functional magnetic resonance imaging;T1ρ imaging;diffusion tensor imaging;T1-mapping;delayed gadolinium-enhanced magnetic resonance imaging of cartilage;early diagnosis

GAO Yiyang   LI Xiangsheng*  

Department of Medical Imaging of Air Force Medical Center, People Military Army, Beijing 100142, China

*Li XS, E-mail: lxsheng500@163.com

Conflicts of interest   None.

Received  2022-04-12
Accepted  2022-09-01
DOI: 10.12015/issn.1674-8034.2022.09.040
Cite this article as: Gao YY, Li XS. The latest research progress of functional MRI in traumatic cartilage injury of ankle joint[J]. Chin J Magn Reson Imaging, 2022, 13(9): 167-170. DOI:10.12015/issn.1674-8034.2022.09.040.

[1]
Armiento AR, Stoddart MJ, Alini M, et al. Biomaterials for articular cartilage tissue engineering: learning from biology[J]. Acta Biomater, 2018, 65: 1-20. DOI: 10.1016/j.actbio.2017.11.021.
[2]
Morgese G, Benetti EM, Zenobi-Wong M. Molecularly engineered biolubricants for articular cartilage[J/OL]. Adv Healthcare Mater, 2018, 7(16) [2022-04-11]. https://doi.org/10.1002/adhm.201701463. DOI: 10.1002/adhm.201701463.
[3]
Bruno F, Arrigoni F, Palumbo P, et al. New advances in MRI diagnosis of degenerative osteoarthropathy of the peripheral joints[J]. Radiol Med, 2019, 124(11): 1121-1127. DOI: 10.1007/s11547-019-01003-1.
[4]
Schütz UH, Billich C, Schoss D, et al. MRI cartilage assessment of the subtalar and midtarsal joints during a transcontinental ultramarathon - new insights into human locomotion[J]. Int J Sports Med, 2018, 39(1): 37-49. DOI: 10.1055/s-0043-118008.
[5]
Zhang CC, Yang L, Duan XJ. Therapeutic advances of osteochondral lesions of talus[J/OL]. Chin J Jt Surg Electron Ed, 2019, 13(4): 466-472 [2022-04-11]. https://zhgjwkzz.cma-cmc.com.cn/CN/10.3877/cma.j.issn.1674-134X.2019.04.014. DOI: 10.3877/cma.j.issn.1674-134X.2019.04.014.
[6]
Zubavlenko RА, Belova SV, Gladkova ЕV, et al. Morphological changes in articular cartilage and free-radical lipid peroxidation in rats with posttraumatic osteoarthrosis[J]. Bull Exp Biol Med, 2021, 172(2): 214-217. DOI: 10.1007/s10517-021-05365-3.
[7]
Chen I, Su CY, Fang C, et al. Preventative treatment of red light-emitting diode protected osteoarthritis-like chondrocytes from oxidative stress-induced inflammation and promoted matrix gene expression[J]. J Taiwan Inst Chem Eng, 2021, 127: 23-31. DOI: 10.1016/j.jtice.2021.07.037.
[8]
Li W, Yu ZC, Jia YB, et al. The correlation between the expression of matrix metalloproteinase-1 and magnetic resonance T2-mapping in talus osteochondral injury[J]. Chin J Magn Reson Imaging, 2021, 12(5): 44-49. DOI: 10.12015/issn.1674-8034.2021.05.010.
[9]
Ma D, He JL, He DP. Chamazulene reverses osteoarthritic inflammation through regulation of matrix metalloproteinases (MMPs) and NF-kβ pathway in in-vitro and in-vivo models[J]. Biosci Biotechnol Biochem, 2020, 84(2): 402-410. DOI: 10.1080/09168451.2019.1682511.
[10]
Sirikaew N, Chomdej S, Tangyuenyong S, et al. Proinflammatory cytokines and lipopolysaccharides up regulate MMP-3 and MMP-13 production in Asian elephant (Elephas maximus) chondrocytes: attenuation by anti-arthritic agents[J/OL]. BMC Vet Res, 2019, 15(1) [2022-04-11]. https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-019-2170-8. DOI: 10.1186/s12917-019-2170-8.
[11]
Li X, Ma CB, Link TM, et al. In vivo T1ρ and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI[J]. Osteoarthritis Cartilage, 2007, 15(7): 789-797. DOI: 10.1016/j.joca.2007.01.011.
[12]
Kajabi AW, Casula V, Sarin JK, et al. Evaluation of articular cartilage with quantitative MRI in an equine model of post-traumatic osteoarthritis[J]. J Orthop Res, 2021, 39(1): 63-73. DOI: 10.1002/jor.24780.
[13]
Melkus G, Beaulé PE, Wilkin G, et al. What is the correlation among dGEMRIC, T1p, and T2* quantitative MRI cartilage mapping techniques in developmental hip dysplasia?[J]. Clin Orthop Relat Res, 2021, 479(5): 1016-1024. DOI: 10.1097/CORR.0000000000001600.
[14]
Kazci O, Yigit H, Kosar P. T2 MRI mapping of knee cartilage in professional ballet dancers[J]. Med Probl Perform Art, 2020, 35(4): 221-226. DOI: 10.21091/mppa.2020.4031.
[15]
Gao LX, Yuan HS. T1ρ technique in quantitatively evaluation on ankle osteochondral lesions of talus[J]. Chin J Med Imaging Technol, 2020, 36(3): 444-447. DOI: 10.13929/j.issn.1003-3289.2020.03.034.
[16]
Hu JZ, Zhang Y, Duan CY, et al. Feasibility study for evaluating early lumbar facet joint degeneration using axial T1 ρ, T2, and T2* mapping in cartilage[J]. J Magn Reson Imaging, 2017, 46(2): 468-475. DOI: 10.1002/jmri.25596.
[17]
Baboli R, Sharafi A, Chang G, et al. Isotropic morphometry and multicomponent T 1 ρ mapping of human knee articular cartilage in vivo at 3T[J]. J Magn Reson Imaging, 2018, 48(6): 1707-1716. DOI: 10.1002/jmri.26173.
[18]
Wikstrom EA, Song K, Tennant JN, et al. T1ρ MRI of the talar articular cartilage is increased in those with chronic ankle instability[J]. Osteoarthritis Cartilage, 2019, 27(4): 646-649. DOI: 10.1016/j.joca.2018.12.019.
[19]
Taylor KA, Collins AT, Heckelman LN, et al. Activities of daily living influence tibial cartilage T1rho relaxation times[J]. J Biomech, 2019, 82: 228-233. DOI: 10.1016/j.jbiomech.2018.10.029.
[20]
van Rossom S, Wesseling M, van Assche D, et al. Topographical variation of human femoral articular cartilage thickness, T1rho and T2 relaxation times is related to local loading during walking[J]. Cartilage, 2019, 10(2): 229-237. DOI: 10.1177/1947603517752057.
[21]
Shiguetomi-Medina JM, Gottliebsen M, Kristiansen MS, et al. Water-content calculation in growth plate and cartilage using MR T1-mapping design and validation of a new method in a porcine model[J]. Skeletal Radiol, 2013, 42(10): 1413-1419. DOI: 10.1007/s00256-013-1674-8.
[22]
Shiguetomi-Medina JM, Ramirez-Gl JL, Stødkilde-Jørgensen H, et al. Systematized water content calculation in cartilage using T1-mapping MR estimations: design and validation of a mathematical model[J]. J Orthop Traumatol, 2017, 18(3): 217-220. DOI: 10.1007/s10195-016-0433-8.
[23]
Li T, Lu J, Wei KR, et al. T1 mapping combined with routine MRI imaging protocol for evaluation of articular cartilage lesion in knee[J]. J Med Imaging, 2021, 31(4): 675-679.
[24]
Sharafi A, Zibetti MVW, Chang G, et al. 3D magnetic resonance fingerprinting for rapid simultaneous T1, T2, and T1ρ volumetric mapping of human articular cartilage at 3 T[J/OL]. NMR Biomed, 2022 [2022-04-11]. https://doi.org/10.1002/nbm. DOI: 10.1002/nbm.4800.
[25]
Mittal S, Pdhan G, Singh S, et al. T1 and T2 mapping of articular cartilage and menisci in early osteoarthritis of the knee using 3-Tesla magnetic resonance imaging [J/OL]. Pol J Radiol, 2019, 84 [2022-04-11]. http://www.polradiol.com/Journal/-126/pdf-39470-10?filename=T1andT2mapping-Mittal.pdf. DOI: 10.5114/pjr.2019.91375.
[26]
Sewerin P, Schleich C, Vordenbäumen S, et al. Update on imaging in rheumatic diseases: cartilage[J]. Clin Exp Rheumatol, 2018, 36(5): 139-144.
[27]
Collins AT, Hatcher CC, Kim SY, et al. Selective enzymatic digestion of proteoglycans and collagens alters cartilage T1rho and T2 relaxation times[J]. Ann Biomed Eng, 2019, 47(1): 190-201. DOI: 10.1007/s10439-018-02143-7.
[28]
Sasho T, Katsuragi J, Yamaguchi S, et al. Associations of three-dimensional T1 rho MR mapping and three-dimensional T2 mapping with macroscopic and histologic grading as a biomarker for early articular degeneration of knee cartilage[J]. Clin Rheumatol, 2017, 36(9): 2109-2119. DOI: 10.1007/s10067-017-3645-2.
[29]
Soellner ST, Goldmann A, Muelheims D, et al. Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee[J]. Osteoarthritis Cartilage, 2017, 25(11): 1841-1849. DOI: 10.1016/j.joca.2017.07.021.
[30]
Lin ZW, Yang ZJ, Wang HS, et al. Histological grade and magnetic resonance imaging quantitative T1rho/T2 mapping in osteoarthritis of the knee: a study in 20 patients[J]. Med Sci Monit, 2019, 25: 10057-10066. DOI: 10.12659/MSM.918274.
[31]
Chaudhari AS, Black MS, Eijgenraam S, et al. Five-minute knee MRI for simultaneous morphometry and T2 relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T[J]. J Magn Reson Imaging, 2018, 47(5): 1328-1341. DOI: 10.1002/jmri.25883.
[32]
Han XB, Zhang QY, A H, et al. Quantitative analysis of tibiotalar articular cartilage changes by T2-mapping sequence after long-term physical training[J]. Chin J Magn Reson Imaging, 2021, 12(4): 62-64, 77. DOI: 10.12015/issn.1674-8034.2021.04.012.
[33]
Bittersohl B, Benedikter C, Franz A, et al. Elite rowers demonstrate consistent patterns of hip cartilage damage compared with matched controls: A T2* mapping study[J]. Clin Orthop Relat Res, 2019, 477(5): 1007-1018. DOI: 10.1097/CORR.0000000000000576.
[34]
Zbýň Š, Santiago C, Johnson CP, et al. Compositional evaluation of lesion and parent bone in patients with juvenile osteochondritis dissecans of the knee using T2 * mapping[J]. J Orthop Res, 2022, 40(7): 1632-1644. DOI: 10.1002/jor.25187.
[35]
Ludwig KD, Johnson CP, Zbýň Š, et al. MRI evaluation of articular cartilage in patients with juvenile osteochondritis dissecans (JOCD) using T2 mapping at 3T[J]. Osteoarthritis Cartilage, 2020, 28(9): 1235-1244. DOI: 10.1016/j.joca.2020.04.001.
[36]
Morgan P, Nissi MJ, Hughes J, et al. T2* mapping provides information that is statistically comparable to an arthroscopic evaluation of acetabular cartilage[J]. Cartilage, 2018, 9(3): 237-240. DOI: 10.1177/1947603517719316.
[37]
Morgan P, Crawford A, Marette S, et al. Using a simplified version of a common surgical grading scale for acetabular labral tears improves the utility of preoperative hip MRI for femoroacetabular impingement[J]. Skeletal Radiol, 2020, 49(12): 1987-1994. DOI: 10.1007/s00256-020-03495-9.
[38]
Weber M. CORR insights®: elite rowers demonstrate consistent patterns of hip cartilage damage compared with matched controls: a T2* mapping study[J]. Clin Orthop Relat Res, 2019, 477(5): 1019-1020. DOI: 10.1097/CORR.0000000000000633.
[39]
Hu YW, Zhang YY, Li QR, et al. Magnetic resonance imaging T2* mapping of the talar dome and subtalar joint cartilage 3 years after anterior talofibular ligament repair or reconstruction in chronic lateral ankle instability[J]. Am J Sports Med, 2021, 49(3): 737-746. DOI: 10.1177/0363546520982240.
[40]
Oei EHG, Wick MC, Müller-Lutz A, et al. Cartilage imaging: techniques and developments[J]. Semin Musculoskelet Radiol, 2018, 22(2): 245-260. DOI: 10.1055/s-0038-1639471.
[41]
Link TM, Neumann J, Li XJ. Prestructural cartilage assessment using MRI[J]. J Magn Reson Imaging, 2017, 45(4): 949-965. DOI: 10.1002/jmri.25554.
[42]
Zilkens C, Miese F, Herten M, et al. Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a histologically controlled study[J/OL]. Eur J Radiol, 2013, 82(2) [2022-04-11]. http://dx.doi.org/10.1016/j.ejrad.2012.09.024. DOI: 10.1016/j.ejrad.2012.09.024.
[43]
Sigudsson U, Muller G, Siversson C, et al. Delayed gadolinium-enhanced MRI of meniscus (dGEMRIM) and cartilage (dGEMRIC) in healthy knees and in knees with different stages of meniscus pathology [J/OL]. BMC Musculoskelet Disord, 2016, 17(1) [2022-04-11]. https://bmcmusculoskeletdisord.biomedcentral.com/track/pdf/10.1186/s12891-016-1244-z.pdf. DOI: 10.1186/s12891-016-1244-z.
[44]
Hangaard S, Gudbergsen H, Daugaard CL, et al. Delayed gadolinium-enhanced MRI of menisci and cartilage (dGEMRIM/dGEMRIC) in obese patients with knee osteoarthritis: cross-sectional study of 85 obese patients with intra-articular administered gadolinium contrast[J]. J Magn Reson Imaging, 2018, 48(6): 1700-1706. DOI: 10.1002/jmri.26190.
[45]
Kanda T, Nakai YD, Hagiwara A, et al. Distribution and chemical forms of gadolinium in the brain: a review[J/OL]. Br J Radiol, 2017, 90(1079) [2022-04-11]. https://doi.org/10.1259/bjr.20170115. DOI: 10.1259/bjr.20170115.
[46]
Davies J, Siebenhandl-Wolff P, Tranquart F, et al. Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration[J]. Arch Toxicol, 2022, 96(2): 403-429. DOI: 10.1007/s00204-021-03189-8.
[47]
Weinreb JC, Rodby RA, Yee J, et al. Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American college of radiology and the national kidney foundation[J]. Kidney Med, 2020, 3(1): 142-150. DOI: 10.1016/j.xkme.2020.10.001.
[48]
Perri M, D'Elia M, Castorani G, et al. Assessment of lumbar disc herniaton using fractional anisotropy in diffusion tensor imaging along with conventional T2-weighted imaging[J]. Neuroradiol J, 2020, 33(1): 24-31. DOI: 10.1177/1971400919891288.
[49]
Wang N, Mirando AJ, Cofer G, et al. Diffusion tractography of the rat knee at microscopic resolution[J]. Magn Reson Med, 2019, 81(6): 3775-3786. DOI: 10.1002/mrm.27652.
[50]
Wang N, Mirando AJ, Cofer G, et al. Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging[J]. Magn Reson Med, 2020, 84(2): 908-919. DOI: 10.1002/mrm.28181.
[51]
Duarte A, Ruiz A, Ferizi U, et al. Diffusion tensor imaging of articular cartilage using a navigated radial imaging spin-echo diffusion (RAISED) sequence[J]. Eur Radiol, 2019, 29(5): 2598-2607. DOI: 10.1007/s00330-018-5780-9.
[52]
Zhao Q, Ridout RP, Shen JK, et al. Effects of angular resolution and b value on diffusion tensor imaging in knee joint[J]. Cartilage, 2021, 13(2_suppl): 295S-303S. DOI: 10.1177/19476035211007909.

PREV Progress of MRI in predicting of the tumor response after neoadjuvant chemoradiotherapy for rectal cancer
NEXT Opportunities and challenges of magnetic resonance imaging: Achievements and prospects over the past decade in China
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn