Share:
Share this content in WeChat
X
Review
Research progress of functional magnetic resonance imaging in evaluating biological behavior of hepatocellular carcinoma
ZHOU Yiran  ZHU Shaocheng 

Cite this article as: Zhou YR, Zhu SC. Research progress of functional magnetic resonance imaging in evaluating biological behavior of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(9): 156-159. DOI:10.12015/issn.1674-8034.2022.09.037.


[Abstract] Hepatocellular carcinoma (HCC) is the most common malignant tumor in the world. Its heterogeneity occurs in different aspects of disease progression. With the development of functional magnetic resonance imaging (fMRI), characteristic imaging signs and related parameters play a central role in evaluating the biological behavior of HCC. It can not only quantify the heterogeneity of HCC tissue structure, typing and cellular molecular expression, so as to comprehensively and deeply understand the changes of tumor molecular pathology, but also provides guidance for the treatment and prognosis evaluation of HCC patients. In this paper, the progress of fMRI in evaluating biological behavior of HCC is reviewed.
[Keywords] functional magnetic resonance imaging;hepatocellular carcinoma;biological behavior;pathological grading;microvascular invasion;molecular pathological related factors

ZHOU Yiran1   ZHU Shaocheng2*  

1 Department of Medical Imaging, Henan Provincial People's Hospital of Xinxiang Medical College, Xinxiang 453003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

*Zhu SC, E-mail: zsc2686@163.com

Conflicts of interest   None.

Received  2022-05-10
Accepted  2022-07-29
DOI: 10.12015/issn.1674-8034.2022.09.037
Cite this article as: Zhou YR, Zhu SC. Research progress of functional magnetic resonance imaging in evaluating biological behavior of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(9): 156-159.DOI:10.12015/issn.1674-8034.2022.09.037

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Xu XF, Xing H, Han J, et al. Risk factors, patterns, and outcomes of late recurrence after liver resection for hepatocellular carcinoma: a multicenter study from China[J]. JAMA Surg, 2019, 154(3): 209-217. DOI: 10.1001/jamasurg.2018.4334.
[3]
Zhou L, Rui JA, Zhou WX, et al. Edmondson-Steiner grade: a crucial predictor of recurrence and survival in hepatocellular carcinoma without microvascular invasio[J]. Pathol Res Pract, 2017, 213(7): 824-830. DOI: 10.1016/j.prp.2017.03.002.
[4]
Lee HA, Lee YS, Kim BK, et al. Change in the recurrence pattern and predictors over time after complete cure of hepatocellular carcinoma[J]. Gut Liver, 2021, 15(3): 420-429. DOI: 10.5009/gnl20101.
[5]
Serai SD. Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging[J]. Pediatr Radiol, 2022, 52(2): 217-227. DOI: 10.1007/s00247-021-05042-7.
[6]
Surov A, Pech M, Omari J, et al. Diffusion-weighted imaging reflects tumor grading and microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(1): 10-24. DOI: 10.1159/000511384.
[7]
Xu YS, Liu HF, Xi DL, et al. Whole-lesion histogram analysis metrics of the apparent diffusion coefficient: a correlation study with histological grade of hepatocellular carcinoma[J]. Abdom Radiol (NY), 2019, 44(9): 3089-3098. DOI: 10.1007/s00261-019-02109-w.
[8]
Szubert-Franczak AE, Naduk-Ostrowska M, Pasicz K, et al. Intravoxel incoherent motion magnetic resonance imaging: basic principles and clinical applications[J/OL]. Pol J Radiol, 2020 [2022-05-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757509. DOI: 10.5114/pjr.2020.101476.
[9]
Iima M. Perfusion-driven intravoxel incoherent motion (IVIM) MRI in oncology: applications, challenges, and future trends[J]. Magn Reson Med Sci, 2021, 20(2): 125-138. DOI: 10.2463/mrms.rev.2019-0124.
[10]
Zhu SC, Liu YH, Wei Y, et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for predicting histological grade of hepatocellular carcinoma: comparison with conventional diffusion-weighted imaging[J]. World J Gastroenterol, 2018, 24(8): 929-940. DOI: 10.3748/wjg.v24.i8.929.
[11]
Sokmen BK, Sabet S, Oz A, et al. Value of intravoxel incoherent motion for hepatocellular carcinoma grading[J]. Transplant Proc, 2019, 51(6): 1861-1866. DOI: 10.1016/j.transproceed.2019.02.027.
[12]
Granata V, Fusco R, Amato DM, et al. Beyond the vascular profile: conventional DWI, IVIM and kurtosis in the assessment of hepatocellular carcinoma[J]. Eur Rev Med Pharmacol Sci, 2020, 24(13): 7284-7293. DOI: 10.26355/eurrev_202007_21883.
[13]
Wang GZ, Guo LF, Gao GH, et al. Magnetic resonance diffusion kurtosis imaging versus diffusion-weighted imaging in evaluating the pathological grade of hepatocellular carcinoma[J]. Cancer Manag Res, 2020, 12: 5147-5158. DOI: 10.2147/CMAR.S254371.
[14]
Zhou JY, Heo HY, Knutsson L, et al. APT-weighted MRI: techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[15]
Lin Y, Luo XJ, Yu L, et al. Amide proton transfer-weighted MRI for predicting histological grade of hepatocellular carcinoma: comparison with diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2019, 9(10): 1641-1651. DOI: 10.21037/qims.2019.08.07.
[16]
Wu BL, Jia F, Li XK, et al. Comparative study of amide proton transfer imaging and intravoxel incoherent motion imaging for predicting histologic grade of hepatocellular carcinoma[J/OL]. Front Oncol, 2020 [2022-7-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659984. DOI: 10.3389/fonc.2020.562049.
[17]
Wu BL, Jia F, Li XK, et al. Amide proton transfer imaging vs diffusion kurtosis imaging for predicting histological grade of hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2020, 7: 159-168. DOI: 10.2147/JHC.S272535.
[18]
Zhou IY, Catalano OA, Caravan P. Advances in functional and molecular MRI technologies in chronic liver diseases[J]. J Hepatol, 2020, 73(5): 1241-1254. DOI: 10.1016/j.jhep.2020.06.020.
[19]
Chen J, Chen CY, Xia CC, et al. Quantitative free-breathing dynamic contrast-enhanced MRI in hepatocellular carcinoma using gadoxetic acid: correlations with Ki67 proliferation status, histological grades, and microvascular density[J]. Abdom Radiol (NY), 2018, 43(6): 1393-1403. DOI: 10.1007/s00261-017-1320-3.
[20]
Li X Q,Wang X,Zhao D W, et al. Application of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in hepatocellular carcinoma[J/OL]. World J Surg Oncol, 2020 [2022-7-12]. https://wjso.biomedcentral.com/articles/10.1186/s12957-020-01996-4. DOI: 10.1186/s12957-020-01996-4.
[21]
Haimerl M, Utpatel K, Gotz A, et al. Quantification of contrast agent uptake in the hepatobiliary phase helps to differentiate hepatocellular carcinoma grade[J/OL]. Sci Rep, 2021 [2022-7-12]. https://www.nature.com/articles/s41598-021-02499-2. DOI: 10.1038/s41598-021-02499-2.
[22]
Huang K, Dong Z, Cai H, et al. Imaging biomarkers for well and moderate hepatocellular carcinoma: preoperative magnetic resonance image and histopathological correlation[J/OL]. BMC Cancer, 2019 [2022-7-12]. https://bmccancer.biomedcentral.com/articles/10.1186/s12885-019-5574-8. DOI: 10.1186/s12885-019-5574-8.
[23]
Yanhan W, Lianfang L, Hao L, et al. Effect of Microvascular Invasion on the Prognosis in Hepatocellular Carcinoma and Analysis of Related Risk Factors: A Two-Center Study[J/OL]. Front Surg, 2021 [2022-7-12]. https://www.frontiersin.org/articles/10.3389/fsurg.2021.733343/full. DOI: 10.3389/fsurg.2021.733343.
[24]
Zhou L, Wang SB, Chen SG, et al. Risk factors of recurrence and poor survival in curatively resected hepatocellular carcinoma with microvascular invasion[J]. Adv Clin Exp Med, 2020, 29(7): 887-892. DOI: 10.17219/acem/76750.
[25]
Erstad DJ, Tanabe KK. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma[J]. Ann Surg Oncol, 2019, 26(5): 1474-1493. DOI: 10.1245/s10434-019-07227-9.
[26]
Yamashita YI, Imai K, Yusa T, et al. Microvascular invasion of single small hepatocellular carcinoma ≤3 cm: Predictors and optimal treatments[J]. Ann Gastroenterol Surg, 2018, 2(3): 197-203. DOI: 10.1002/ags3.12057.
[27]
Chen SL, Xiao H, Xie ZL, et al. The presence of microvascular invasion guides treatment strategy in recurrent HBV-related HCC[J]. Eur Radiol, 2020, 30(6): 3473-3485. DOI: 10.1007/s00330-019-06640-8.
[28]
Wei Y, Huang ZX, Tang HH, et al. IVIM improves preoperative assessment of microvascular invasion in HCC[J]. Eur Radiol, 2019, 29(10): 5403-5414. DOI: 10.1007/s00330-019-06088-w.
[29]
Li HX, Xue YJ, Wang LL, et al. Histogram analysis of stretched exponential diffusion weighted imaging model for predicting microvascular invasion of single hepatocellular carcinoma[J]. Chin J Med Imaging Technol, 2021, 37(12): 1844-1848. DOI: 10.13929/j.issn.1003-3289.2021.12.020.
[30]
Song Q, Guo YX, Yao XZ, et al. Comparative study of evaluating the microcirculatory function status of primary small HCC between the CE (DCE-MRI) and Non-CE (IVIM-DWI) MR Perfusion Imaging[J]. Abdom Radiol (NY), 2021, 46(6): 2575-2583. DOI: 10.1007/s00261-020-02945-1.
[31]
Wang WT, Yang L, Yang ZX, et al. Assessment of microvascular invasion of hepatocellular carcinoma with diffusion kurtosis imaging[J]. Radiology, 2018, 286(2): 571-580. DOI: 10.1148/radiol.2017170515.
[32]
Rao C, Wang X, Li M, et al. Value of T1 mapping on gadoxetic acid-enhanced MRI for microvascular invasion of hepatocellular carcinoma: a retrospective study[J/OL]. BMC Med Imaging, 2020 [2022-7-12]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-020-00433-y. DOI: 10.1186/s12880-020-00433-y.
[33]
Zhang T, Pandey G, Xu L, et al. The value of TTPVI in prediction of microvascular invasion in hepatocellular carcinoma[J]. Cancer Manag Res, 2020, 12: 4097-4105. DOI: 10.2147/CMAR.S245475.
[34]
Hong SB, Choi SH, Kim SY, et al. MRI features for predicting microvascular invasion of hepatocellular carcinoma: a systematic review and Meta-analysis[J]. Liver Cancer, 2021, 10(2): 94-106. DOI: 10.1159/000513704.
[35]
Wang J, Zheng J, Sun J, et al. The value of Gd-EOB-DTPA enhanced MRI in predicting microvascular invasion of hepatocellular carcinoma and its grade[J]. Chin J Magn Reson Imaging, 2021, 12(12): 79-83, 88. DOI: 10.12015/issn.1674-8034.2021.12.016.
[36]
Zhou M, Shan D, Zhang C, et al. Value of gadoxetic acid-enhanced MRI for microvascular invasion of small hepatocellular carcinoma: a retrospective study[J/OL]. BMC Med Imaging, 2021 [2022-7-12]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-021-00572-w. DOI: 10.1186/s12880-021-00572-w.
[37]
Calderaro J, Ziol M, Paradis V, et al. Molecular and histological correlations in liver cancer[J]. J Hepatol, 2019, 71(3): 616-630. DOI: 10.1016/j.jhep.2019.06.001.
[38]
Holczbauer A, Wangensteen K J, Shin S. Cellular origins of regenerating liver and hepatocellular carcinoma[J/OL]. JHEP Rep, 2022 [2022-7-12]. https://linkinghub.elsevier.com/retrieve/pii/S2589555921001920. DOI: 10.1016/j.jhepr.2021.100416.
[39]
Zhuo JY, Lu D, Tan WY, et al. CK19-positive hepatocellular carcinoma is a characteristic subtype[J]. J Cancer, 2020, 11(17): 5069-5077. DOI: 10.7150/jca.44697.
[40]
Rhee H, Kim H, Park YN. Clinico-radio-pathological and molecular features of hepatocellular carcinomas with keratin 19 expression[J]. Liver Cancer, 2020, 9(6): 663-681. DOI: 10.1159/000510522.
[41]
Wang HQ, Yang C, Zeng MS, et al. Magnetic resonance texture analysis for the identification of cytokeratin 19-positive hepatocellular carcinoma[J]. Eur J Radiol, 2019, 117: 164-170. DOI: 10.1016/j.ejrad.2019.06.016.
[42]
Choi SY, Kim SH, Park CK, et al. Imaging features of gadoxetic acid-enhanced and diffusion-weighted MR imaging for identifying cytokeratin 19-positive hepatocellular carcinoma: a retrospective observational study[J]. Radiology, 2018, 286(3): 897-908. DOI: 10.1148/radiol.2017162846.
[43]
Guo Y, Chen J, Zhang Y, et al. Differentiating Cytokeratin 19 expression of hepatocellular carcinoma by using multi-b-value diffusion-weighted MR imaging with mono-exponential, stretched exponential, intravoxel incoherent motion, diffusion kurtosis imaging and fractional order calculus models[J/OL]. Eur J Radiol, 2022 [2022-7-12]. https://www.ejradiology.com/article/S0720-048X(22)00087-0/fulltext. DOI: 10.1016/j.ejrad.2022.110237.
[44]
Zhou FB, Shang WT, Yu XL, et al. Glypican-3: a promising biomarker for hepatocellular carcinoma diagnosis and treatment[J]. Med Res Rev, 2018, 38(2): 741-767. DOI: 10.1002/med.21455.
[45]
Li N, Spetz MR, Ho M. The role of glypicans in cancer progression and therapy[J]. J Histochem Cytochem, 2020, 68(12): 841-862. DOI: 10.1369/0022155420933709.
[46]
Zhao J, Gao S, Sun W, et al. Magnetic resonance imaging and diffusion-weighted imaging-based histogram analyses in predicting glypican 3-positive hepatocellular carcinoma[J/OL]. Eur J Radiol, 2021 [2022-7-12]. https://www.ejradiology.com/article/S0720-048X(21)00212-6/fulltext. DOI: 10.1016/j.ejrad.2021.109732.
[47]
Chen RS, Bai Y, Liu TY, et al. Evaluation of glypican-3 expression in hepatocellular carcinoma by using IDEAL IQ magnetic resonance imaging[J/OL]. Acad Radiol, 2021 [2022-07-12]. https://linkinghub.elsevier.com/retrieve/pii/S1076-6332(20)30291-9. DOI: 10.1016/j.acra.2020.05.015.

PREV Research progress in predicting axillary lymph node metastasis of breast cancer by preoperative MRI
NEXT Application progress of radiogenomics in the prediction of liver metastasis gene mutations in colorectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn