Share this content in WeChat
Research progress of magnetic resonance non-contrast three-dimensional coronary imaging
WU Xi  TANG Lu  YUE Xun  PENG Pengfei  DENG Qiao  WU Tao  SUN Jiayu 

Cite this article as: Wu X, Tang L, Yue X, et al. Research progress of magnetic resonance non-contrast three-dimensional coronary imaging[J]. Chin J Magn Reson Imaging, 2022, 13(9): 148-150, 155. DOI:10.12015/issn.1674-8034.2022.09.035.

[Abstract] MR non-contrast three-dimensional coronary imaging has the unique advantages of no-radiation, no dependence on contrast agents and free breathing, which can non-invasively detect abnormalities in the coronary wall and lumen. With the continuous development of MRI sequences, acceleration technology and artificial intelligence, coronary imaging technology is also becoming more and more perfect and gradually applied in clinical practice, benefiting more patients. The application progress of coronary MRI in detecting coronary lumen and wall abnormalities is reviewed in this paper.
[Keywords] coronary vessels;magnetic resonance angiography;deep learning;coronary artery disease;coronary plaque imaging

WU Xi1, 2   TANG Lu2   YUE Xun1, 2   PENG Pengfei2   DENG Qiao2   WU Tao2   SUN Jiayu2*  

1 Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

2 Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China

*Sun JY, E-mail:

Conflicts of interest   None.

Received  2022-05-24
Accepted  2022-08-10
DOI: 10.12015/issn.1674-8034.2022.09.035
Cite this article as: Wu X, Tang L, Yue X, et al. Research progress of magnetic resonance non-contrast three-dimensional coronary imaging[J]. Chin J Magn Reson Imaging, 2022, 13(9): 148-150, 155.DOI:10.12015/issn.1674-8034.2022.09.035

Kato Y, Ambale-Venkatesh B, Kassai Y, et al. Non-contrast coronary magnetic resonance angiography: current frontiers and future horizons[J]. Magn Reson Mater Phy, 2020, 33(5): 591-612. DOI: 10.1007/s10334-020-00834-8.
Magnetic Resonance Application Professional Committee of China Medical Equipment Association.Expert consensus on clinical application of coronary MR angiography (first edition)[J]. Chin J Radiol, 2021, 55(9): 895-902. DOI: 10.3760/cma.j.cn112149-20210511-00468.
Kato S, Fukui K. Successful stent implantation with the use of non contrast whole-heart coronary magnetic resonance angiography and intravascular ultrasound in patient with allergy to iodinated contrast media[J]. Cardiovasc Interv and Ther, 2021, 36(4): 539-541. DOI: 10.1007/s12928-020-00712-z.
Hajhosseiny R, Bustin A, Munoz C, et al. Coronary magnetic resonance angiography: technical innovations leading us to the promised land?[J]. JACC Cardiovasc Imaging, 2020, 13(12): 2653-2672. DOI: 10.1016/j.jcmg.2020.01.006.
Hajhosseiny R, Munoz C, Cruz G, et al. Coronary magnetic resonance angiography in chronic coronary syndromes[J/OL]. Front Cardiovasc Med, 2021, 8 [2022-05-20]. DOI: 10.3389/fcvm.2021.682924.
Lu H, Guo J, Zhao S, et al. Assessment of non-contrast-enhanced Dixon water-fat separation compressed sensing whole-heart coronary MR angiography at 3.0 T: a single-center experience[J]. Acad Radiol, 2022, 29(Suppl 4): S82-S90. DOI: 10.1016/j.acra.2021.05.009.
Roy CW, Heerfordt J, Piccini D, et al. Motion compensated whole-heart coronary cardiovascular magnetic resonance angiography using focused navigation (fNAV)[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1) [2022-05-20]. DOI: 10.1186/s12968-021-00717-4.
Experts Consensus Group on the Hybrid Coronary Revascularization in China. Hybrid coronary revascularization experts consensus in China (2022)[J]. Chin J Thorac Cardiovasc Surg, 2022, 38(7): 385-395. DOI: 10.3760/cma.j.cn112434-20220507-00152.
Ties D, van Dorp P, Pundziute G, et al. Early detection of obstructive coronary artery disease in the asymptomatic high-risk population: objectives and study design of the EARLY-SYNERGY trial[J]. Am Heart J, 2022, 246: 166-177. DOI: 10.1016/j.ahj.2022.01.005.
GBD Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9.
Taylor AJ, Papapostolou S. Finding the right pathway for the assessment of stable coronary artery disease[J]. JACC Cardiovasc Imaging, 2022, 15(4): 626-628. DOI: 10.1016/j.jcmg.2021.12.009.
Zahergivar A, Kocher M, Waltz J, et al. The diagnostic value of non-contrast magnetic resonance coronary angiography in the assessment of coronary artery disease: a systematic review and meta-analysis[J/OL]. Heliyon, 2021, 7(3) [2022-05-20]. DOI: 10.1016/j.heliyon.2021.e06386.
Zhao SH, Li CG, Chen YY, et al. Applying nitroglycerin at coronary MR angiography at 1.5 T: diagnostic performance of coronary vasodilation in patients with coronary artery disease[J/OL]. Radiol Cardiothorac Imaging, 2020, 2(2) [2022-05-20]. DOI: 10.1148/ryct.2020190018.
Lin L, Wang L, Zhang XN, et al. A clinical strategy to improve the diagnostic accuracy of 1.5-T non-contrast MR coronary angiography for detection of coronary artery disease: combination of whole-heart and volume-targeted imaging[J]. Eur Radiol, 2021, 31(4): 1894-1904. DOI: 10.1007/s00330-020-07135-7.
Zhao SH, Chen YY, Yun H, et al. Three-dimensional free-breathing whole-heart coronary magnetic resonance angiography at 1.5 T: gadobutrol-enhanced gradient-echo acquisition sequence versus non-contrast-enhanced steady-state free precession sequence[J]. J Comput Assist Tomogr, 2019, 43(6): 919-925. DOI: 10.1097/RCT.0000000000000933.
Kaul MG, Stork A, Bansmann PM, et al. Evaluation of balanced steady-state free precession (TrueFISP) and K-space segmented gradient echo sequences for 3D coronary MR angiography with navigator gating at 3 Tesla[J]. Rofo, 2004, 176(11): 1560-1565. DOI: 10.1055/s-2004-813629.
Nakamura M, Kido T, Kido T, et al. Non-contrast compressed sensing whole-heart coronary magnetic resonance angiography at 3T: a comparison with conventional imaging[J]. Eur J Radiol, 2018, 104: 43-48. DOI: 10.1016/j.ejrad.2018.04.025.
Heer T, Reiter S, Trißler M, et al. Effect of nitroglycerin on the performance of MR coronary angiography[J]. J Magn Reson Imaging, 2017, 45(5): 1419-1428. DOI: 10.1002/jmri.25483.
Kang S, Fan HM, Li J, et al. Relationship of arterial stiffness and early mild diastolic heart failure in general middle and aged population[J]. Eur Heart J, 2010, 31(22): 2799-2807. DOI: 10.1093/eurheartj/ehq296.
Lu HF, Zhao SH, Tian D, et al. Clinical application of non-contrast-enhanced Dixon water-fat separation compressed SENSE whole-heart coronary MR angiography at 3.0 T with and without nitroglycerin[J]. J Magn Reson Imaging, 2022, 55(2): 579-591. DOI: 10.1002/jmri.27829.
Hirai K, Kido T, Kido T, et al. Feasibility of contrast-enhanced coronary artery magnetic resonance angiography using compressed sensing[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1) [2022-05-20]. DOI: 10.1186/s12968-020-0601-0.
Akçakaya M, Basha TA, Chan RH, et al. Accelerated isotropic sub-millimeter whole-heart coronary MRI: compressed sensing versus parallel imaging[J]. Magn Reson Med, 2014, 71(2): 815-822. DOI: 10.1002/mrm.24683.
Androulakis E, Mohiaddin R, Bratis K. Magnetic resonance coronary angiography in the era of multimodality imaging[J/OL]. Clin Radiol, 2022, 77(7) [2022-08-03]. DOI: 10.1016/j.crad.2022.03.008.
Zitzelsberger T, Krumm P, Hornung A, et al. Multi-phase coronary magnetic resonance angiography improves delineation of coronary arteries[J]. Acta Radiol, 2019, 60(11): 1422-1429. DOI: 10.1177/0284185119830289.
Hofman MB, Wickline SA, Lorenz CH. Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification[J]. J Magn Reson Imaging, 1998, 8(3): 568-576. DOI: 10.1002/jmri.1880080309.
Albrecht MH, Varga-Szemes A, Schoepf UJ, et al. Diagnostic accuracy of noncontrast self-navigated free-breathing MR angiography versus CT angiography: a prospective study in pediatric patients with suspected anomalous coronary arteries[J]. Acad Radiol, 2019, 26(10): 1309-1317. DOI: 10.1016/j.acra.2018.12.010.
Nazir MS, Bustin A, Hajhosseiny R, et al. High-resolution non-contrast free-breathing coronary cardiovascular magnetic resonance angiography for detection of coronary artery disease: validation against invasive coronary angiography[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1) [2022-08-01]. DOI: 10.1186/s12968-022-00858-0.
Heerfordt J, Stuber M, Maillot A, et al. A quantitative comparison between a navigated Cartesian and a self-navigated radial protocol from clinical studies for free-breathing 3D whole-heart bSSFP coronary MRA[J]. Magn Reson Med, 2020, 84(1): 157-169. DOI: 10.1002/mrm.28101.
Munoz C, Cruz G, Neji R, et al. Motion corrected water/fat whole-heart coronary MR angiography with 100% respiratory efficiency[J]. Magn Reson Med, 2019, 82(2): 732-742. DOI: 10.1002/mrm.27732.
Hajhosseiny R, Rashid I, Bustin A, et al. Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-intermediate risk of coronary artery disease: a single center trial[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1) [2022-5-20]. DOI: 10.1186/s12968-021-00758-9.
Zhu B, Liu JZ, Cauley SF, et al. Image reconstruction by domain-transform manifold learning[J]. Nature, 2018, 555(7697): 487-492. DOI: 10.1038/nature25988.
Han Y, Sunwoo L, Ye JC. k-space deep learning for accelerated MRI[J]. IEEE Trans Med Imaging, 2020, 39(2): 377-386. DOI: 10.1109/tmi.2019.2927101.
Yokota Y, Takeda C, Kidoh M, et al. Effects of deep learning reconstruction technique in high-resolution non-contrast magnetic resonance coronary angiography at a 3-tesla machine[J]. J L'association Can Des Radiol, 2021, 72(1): 120-127. DOI: 10.1177/0846537119900469.
Qi HK, Hajhosseiny R, Cruz G, et al. End-to-end deep learning nonrigid motion-corrected reconstruction for highly accelerated free-breathing coronary MRA[J]. Magn Reson Med, 2021, 86(4): 1983-1996. DOI: 10.1002/mrm.28851.
Fuin N, Bustin A, Küstner T, et al. A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography[J]. Magn Reson Imaging, 2020, 70: 155-167. DOI: 10.1016/j.mri.2020.04.007.
Hosseini SAH, Zhang C, Weingärtner S, et al. Accelerated coronary MRI with sRAKI: a database-free self-consistent neural network k-space reconstruction for arbitrary undersampling[J/OL]. PLoS One, 2020, 15(2) [2022-05-20]. DOI: 10.1371/journal.pone.0229418.
Kobayashi H, Nakayama R, Hizukuri A, et al. Improving image resolution of whole-heart coronary MRA using convolutional neural network[J]. J Digit Imaging, 2020, 33(2): 497-503. DOI: 10.1007/s10278-019-00264-6.
Qi HK, Fuin N, Cruz G, et al. Non-rigid respiratory motion estimation of whole-heart coronary MR images using unsupervised deep learning[J]. IEEE Trans Med Imaging, 2021, 40(1): 444-454. DOI: 10.1109/TMI.2020.3029205.
Stuber M. CATCH the wave of coronary atherosclerotic plaque MRI[J]. Radiology, 2022, 302(3): 566-567. DOI: 10.1148/radiol.212911.
Hajhosseiny R, Bahaei TS, Prieto C, et al. Molecular and nonmolecular magnetic resonance coronary and carotid imaging[J]. Arterioscler Thromb Vasc Biol, 2019, 39(4): 569-582. DOI: 10.1161/ATVBAHA.118.311754.
Liu W, Xie YB, Wang C, et al. Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery specimens[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1) [2022-08-01]. DOI: 10.1186/s12968-018-0447-x.
Kawasaki T, Koga S, Koga N, et al. Characterization of hyperintense plaque with noncontrast T1-weighted cardiac magnetic resonance coronary plaque imaging[J]. JACC Cardiovasc Imaging, 2009, 2(6): 720-728. DOI: 10.1016/j.jcmg.2009.01.016.
Noguchi T, Kawasaki T, Tanaka A, et al. High-intensity signals in coronary plaques on noncontrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events[J]. J Am Coll Cardiol, 2014, 63(10): 989-999. DOI: 10.1016/j.jacc.2013.11.034.
Xie YB, Kim YJ, Pang JN, et al. Coronary atherosclerosis T1-weighed characterization with integrated anatomical reference: comparison with high-risk plaque features detected by invasive coronary imaging[J]. JACC Cardiovasc Imaging, 2017, 10(6): 637-648. DOI: 10.1016/j.jcmg.2016.06.014.
Sato S, Matsumoto H, Li DB, et al. Coronary high-intensity plaques at T1-weighted MRI in stable coronary artery disease: comparison with near-infrared spectroscopy intravascular US[J]. Radiology, 2022, 302(3): 557-565. DOI: 10.1148/radiol.211463.
Kanaya T, Noguchi T, Otsuka F, et al. Optical coherence tomography-verified morphological correlates of high-intensity coronary plaques on non-contrast T1-weighted magnetic resonance imaging in patients with stable coronary artery disease[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(1): 75-83. DOI: 10.1093/ehjci/jey035.
Ginami G, Neji R, Rashid I, et al. 3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1) [2022-08-01]. DOI: 10.1186/s12968-017-0405-z.

PREV Progress in the clinical application of compressed sensing technology in brain MRI
NEXT Research progress in predicting axillary lymph node metastasis of breast cancer by preoperative MRI

Tel & Fax: +8610-67113815    E-mail: