Share this content in WeChat
Progress in the clinical application of compressed sensing technology in brain MRI
YANG Jing  MIAO Yanwei 

Cite this article as: Yang J, Miao YW. Progress in the clinical application of compressed sensing technology in brain MRI[J]. Chin J Magn Reson Imaging, 2022, 13(9): 144-147, 159. DOI:10.12015/issn.1674-8034.2022.09.034.

[Abstract] MRI is a common imaging technology in clinical practice. Due to its long scanning time, patient comfort and compliance are reduced, producing irreversible movement artifacts, resulting in impaired image quality and adverse effects on clinical diagnosis and work efficiency. Therefore, the need to shorten the MRI scanning time without affecting the image quality is very urgent. Compressed sensing (CS) technology is reconstructed and recovered by using sampling points much lower than the traditional sampling method, which can shorten the signal acquisition time. This technique can significantly shorten the scanning time, without affecting the MRI image quality, and even improve the image resolution and signal to ratio, which can well solve the above problems. Any technology requires a lot of scientific research before clinical practice to determine whether it has an impact on clinical diagnosis. In this review, we summaried the application of CS technology in craniocerebral MRI, discusses its application progress in various conventional MRI scanning sequences, and provides multi-angle information for the improvement of clinical scanning practice and CS technology and future scientific research hotspots.
[Keywords] compressed sensing;magnetic resonance imaging;sparsity;scanning time;acceleration factor;image quality;signal to noise ratio;diagnostic performance

YANG Jing   MIAO Yanwei*  

Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

*Miao YW, E-mail:

Conflicts of interest   None.

Received  2022-04-06
Accepted  2022-09-13
DOI: 10.12015/issn.1674-8034.2022.09.034
Cite this article as: Yang J, Miao YW. Progress in the clinical application of compressed sensing technology in brain MRI[J]. Chin J Magn Reson Imaging, 2022, 13(9): 144-147, 159.DOI:10.12015/issn.1674-8034.2022.09.034

Yang AC, Kretzler M, Sudarski S, et al. Sparse reconstruction techniques in magnetic resonance imaging: methods, applications, and challenges to clinical adoption[J]. Invest Radiol, 2016, 51(6): 349-364. DOI: 10.1097/RLI.0000000000000274.
Donoho DL. Compressed sensing[J]. IEEE Trans Inf Theory, 2006, 52(4): 1289-1306.
Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements[EB/OL]. 2005: DOI: 10.48550/arXiv.math/0503066.
Sehgal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging[J]. J Magn Reson Imaging, 2005, 22(4): 439-450. DOI: 10.1002/jmri.20404.
Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195. DOI: 10.1002/mrm.21391.
Sharma SD, Fong CL, Tzung BS, et al. Clinical image quality assessment of accelerated magnetic resonance neuroimaging using compressed sensing[J]. Invest Radiol, 2013, 48(9): 638-645. DOI: 10.1097/RLI.0b013e31828a012d.
Kim Y, Hwang J, Hong SS, et al. Clinical feasibility of high-resolution contrast-enhanced dynamic T1-weighted magnetic resonance imaging of the upper abdomen using compressed sensing[J]. J Comput Assist Tomogr, 2021, 45(5): 669-677. DOI: 10.1097/RCT.0000000000001221.
Altmann S, Halfmann MC, Abidoye I, et al. Compressed sensing acceleration of cardiac cine imaging allows reliable and reproducible assessment of volumetric and functional parameters of the left and right atrium[J]. Eur Radiol, 2021, 31(10): 7219-7230. DOI: 10.1007/s00330-021-07830-z.
Utzschneider M, Müller M, Gast LV, et al. Towards accelerated quantitative sodium MRI at 7 T in the skeletal muscle: comparison of anisotropic acquisition-and compressed sensing techniques[J]. Magn Reson Imaging, 2021, 75: 72-88. DOI: 10.1016/j.mri.2020.09.019.
Wang PN, Velikina JV, Strigel RM, et al. Comparison of data-driven and general temporal constraints on compressed sensing for breast DCE MRI[J]. Magn Reson Med, 2021, 85(6): 3071-3084. DOI: 10.1002/mrm.28628.
Tomita H, Deguchi Y, Fukuchi H, et al. Combination of compressed sensing and parallel imaging for T2-weighted imaging of the oral cavity in healthy volunteers: comparison with parallel imaging[J]. Eur Radiol, 2021, 31(8): 6305-6311. DOI: 10.1007/s00330-021-07699-y.
Suh CH, Jung SC, Lee HB, et al. High-resolution magnetic resonance imaging using compressed sensing for intracranial and extracranial arteries: comparison with conventional parallel imaging[J]. Korean J Radiol, 2019, 20(3): 487-497. DOI: 10.3348/kjr.2018.0424.
Duan Y, Zhang J, Zhuo Z, et al. Accelerating brain 3D T1-weighted turbo field echo MRI using compressed sensing-sensitivity encoding (CS-SENSE)[J/OL]. Eur J Radio, 2020, 131 [2022-04-05]. DOI: 10.1016/j.ejrad.2020.109255.
Lu SS, Qi M, Zhang X, et al. Clinical evaluation of highly accelerated compressed sensing time-of-flight MR angiography for intracranial arterial Stenosis[J]. AJNR Am J Neuroradiol, 2018, 39(10): 1833-1838. DOI: 10.3174/ajnr.A5786.
Yarach U, Saekho S, Setsompop K, et al. Feasibility of accelerated 3D T1-weighted MRI using compressed sensing: application to quantitative volume measurements of human brain structures[J]. MAGMA, 2021, 34(6): 915-927. DOI: 10.1007/s10334-021-00939-8.
Vranic JE, Cross NM, Wang Y, et al. Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality[J]. AJNR Am J Neuroradiol, 2019, 40(1): 92-98. DOI: 10.3174/ajnr.A5905.
Toledano-Massiah S, Sayadi A, de Boer R, et al. Accuracy of the compressed sensing accelerated 3D-FLAIR sequence for the detection of MS plaques at 3T[J]. AJNR Am J Neuroradiol, 2018, 39(3): 454-458. DOI: 10.3174/ajnr.A5517.
Molnar U, Nikolov J, Nikolić O, et al. Diagnostic quality assessment of compressed SENSE accelerated magnetic resonance images in standard neuroimaging protocol: choosing the right acceleration[J]. Phys Med, 2021, 88: 158-166. DOI: 10.1016/j.ejmp.2021.07.003.
Mönch S, Sollmann N, Hock A, et al. Magnetic resonance imaging of the brain using compressed sensing-quality assessment in daily clinical routine[J]. Clin Neuroradiol, 2020, 30(2): 279-286. DOI: 10.1007/s00062-019-00789-x.
Ikeda H, Ohno Y, Murayama K, et al. Compressed sensing and parallel imaging accelerated T2 FSE sequence for head and neck MR imaging: Comparison of its utility in routine clinical practice[J/OL]. Eur J Radiol, 2021, 135 [2022-04-05]. DOI: 10.1016/j.ejrad.2020.109501.
Bardo DME, Rubert N. Radial sequences and compressed sensing in pediatric body magnetic resonance imaging[J]. Pediatr Radiol, 2022, 52(2): 382-390. DOI: 10.1007/s00247-021-05097-6.
Ma YM, Li M, Zhang YJ. Value of compressed sensing technique in fetal brain magnetic resonance imaging[J]. Chin J Clin Res, 2021, 34(5): 615-619. DOI: 10.13429/j.cnki.cjcr.2021.05.009.
Meister RL, Groth M, Jürgens JHW, et al. Compressed SENSE in pediatric brain tumor MR imaging: assessment of image quality, examination time and energy release[J]. Clin Neuroradiol, 2022, 32(3): 725-733. DOI: 10.1007/s00062-021-01112-3.
Jin ZY, Du YP. Application of partial-echo compressed sensing in MR angiography[C]//2012 5th International Conference on BioMedical Engineering and Informatics. Chongqing: IEEE, 2012: 26-29. DOI: 10.1109/BMEI.2012.6513105.
Fujita N, Hirabuki N, Fujii K, et al. MR imaging of middle cerebral artery stenosis and occlusion: value of MR angiography[J]. AJNR Am J Neuroradiol, 1994, 15(2): 335-341.
Ding J, Duan Y, Zhuo Z, et al. Acceleration of brain TOF-MRA with compressed sensitivity encoding: a multicenter clinical study[J]. AJNR Am J Neuroradiol, 2021, 42(7): 1208-1215. DOI: 10.3174/ajnr.A7091.
Bhagat YA, Emery DJ, Naik S, et al. Comparison of generalized autocalibrating partially parallel acquisitions and modified sensitivity encoding for diffusion tensor imaging[J]. AJNR Am J Neuroradiol, 2007, 28(2): 293-298.
Sakata A, Fushimi Y, Okada T, et al. Evaluation of cerebral arteriovenous shunts: a comparison of parallel imaging time-of-flight magnetic resonance angiography (TOF-MRA) and compressed sensing TOF-MRA to digital subtraction angiography[J]. Neuroradiology, 2021, 63(6): 879-887. DOI: 10.1007/s00234-020-02581-y.
Lin ZY, Zhang XD, Guo L, et al. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing[J]. J Magn Reson Imaging, 2019, 50(6): 1843-1851. DOI: 10.1002/jmri.26752.
Fushimi Y, Fujimoto K, Okada T, et al. Compressed sensing 3-dimensional time-of-flight magnetic resonance angiography for cerebral aneurysms: optimization and evaluation[J]. Invest Radiol, 2016, 51(4): 228-235. DOI: 10.1097/RLI.0000000000000226.
Kim D, Heo YJ, Jeong HW, et al. Compressed sensing time-of-flight magnetic resonance angiography with high spatial resolution for evaluating intracranial aneurysms: comparison with digital subtraction angiography[J]. Neuroradiol J, 2021, 34(3): 213-221. DOI: 10.1177/1971400920988099.
Zhu CC, Tian B, Chen LG, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE)[J]. MAGMA, 2018, 31(3): 457-467. DOI: 10.1007/s10334-017-0667-3.
Geethanath S, Reddy R, Konar AS, et al. Compressed sensing MRI: a review[J]. Crit Rev Biomed Eng, 2013, 41(3): 183-204. DOI: 10.1615/critrevbiomedeng.2014008058.
Zhang Z, Zhang B, Li M, et al. Multishot Cartesian turbo spin-echo diffusion imaging using iterative POCSMUSE Reconstruction[J]. J Magn Reson Imaging, 2017, 46(1): 167-174. DOI: 10.1002/jmri.25522.
Naeyaert M, Aelterman J, van Audekerke J, et al. Accelerating in vivo fast spin echo high angular resolution diffusion imaging with an isotropic resolution in mice through compressed sensing[J]. Magn Reson Med, 2021, 85(3): 1397-1413. DOI: 10.1002/mrm.28520.
Takashima H, Nakanishi M, Imamura R, et al. Optimal acceleration factor for image acquisition in turbo spin echo: diffusion-weighted imaging with compressed sensing[J]. Radiol Phys Technol, 2021, 14(1): 100-104. DOI: 10.1007/s12194-021-00607-5.
Sartoretti T, Reischauer C, Sartoretti E, et al. Common artefacts encountered on images acquired with combined compressed sensing and SENSE[J]. Insights Imaging, 2018, 9(6): 1107-1115. DOI: 10.1007/s13244-018-0668-4.
Heiland S. From A as in aliasing to Z as in zipper: artifacts in MRI[J]. Clin Neuroradiol, 2008, 18(1): 25-36. DOI: 10.1007/s00062-008-8003-y.
Zhang C, Arefin TM, Nakarmi U, et al. Acceleration of three-dimensional diffusion magnetic resonance imaging using a kernel low-rank compressed sensing method[J/OL]. Neuroimage, 2020, 210 [2022-04-05]. DOI: 10.1016/j.neuroimage.2020.116584.
Lebihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications[J]. J Magn Reson Imaging, 2001, 13(4): 534-546. DOI: 10.1002/jmri.1076.
Shi XW, Ma XD, Wu WC, et al. Parallel imaging and compressed sensing combined framework for accelerating high-resolution diffusion tensor imaging using inter-image correlation[J]. Magn Reson Med, 2015, 73(5): 1775-1785. DOI: 10.1002/mrm.25290.
Zhou JY, Heo HY, Knutsson L, et al. APT-weighted MRI: techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
Lingl JP, Wunderlich A, Goerke S, et al. The Value of APTw CEST MRI in Routine Clinical Assessment of Human Brain Tumor Patients at 3T[J/OL]. Diagnostics (Basel), 2022, 12(2) [2022-04-05]. DOI: 10.3390/diagnostics12020490.
Heo HY, Xu X, Jiang SS, et al. Prospective acceleration of parallel RF transmission-based 3D chemical exchange saturation transfer imaging with compressed sensing[J]. Magn Reson Med, 2019, 82(5): 1812-1821. DOI: 10.1002/mrm.27875.
She HJ, Greer JS, Zhang S, et al. Accelerating chemical exchange saturation transfer MRI with parallel blind compressed sensing[J]. Magn Reson Med, 2019, 81(1): 504-513. DOI: 10.1002/mrm.27400.
Halefoglu AM, Yousem DM. Susceptibility weighted imaging: clinical applications and future directions[J]. World J Radiol, 2018, 10(4): 30-45. DOI: 10.4329/wjr.v10.i4.30.
Yang L, Zhang SD. Application and development of susceptibility weighted imaging in central nervous system diseases[J]. J Med Imaging, 2019, 29(12):2144-2146.
Gencturk M, Cam I, Koksel Y, et al. Role of susceptibility-weighted imaging in detecting retinal hemorrhages in children with head trauma[J]. Clin Neuroradiol, 2021, 31(3): 611-617. DOI: 10.1007/s00062-020-00939-6.
Jiang HF, Zhang YQ, Pang JX, et al. Factors associated with prominent vessel sign on susceptibility-weighted imaging in acute ischemic stroke[J]. Sci Rep, 2021, 11(1) [2022-04-05]. DOI: 10.1038/s41598-021-84269-8.
Sotoudeh H, Sarrami AH, Wang JX, et al. Susceptibility-weighted imaging in neurodegenerative disorders: a review[J]. J Neuroimaging, 2021, 31(3): 459-470. DOI: 10.1111/jon.12841.
Kang H, Jang S. The diagnostic value of postcontrast susceptibility-weighted imaging in the assessment of intracranial brain neoplasm at 3T[J]. Acta Radiol Stock Swed, 2021, 62(6): 791-798. DOI: 10.1177/0284185120940265.
Ding J, Duan Y, Wang M, et al. Acceleration of brain susceptibility-weighted imaging with compressed sensitivity encoding: a prospective multicenter study[J]. AJNR Am J Neuroradiol, 2022, 43(3): 402-409. DOI: 10.3174/ajnr.A7441.

PREV Research progress in MRI of anti‐N‐methyl‐D‐aspartate receptor encephalitis
NEXT Research progress of magnetic resonance non-contrast three-dimensional coronary imaging

Tel & Fax: +8610-67113815    E-mail: