Share this content in WeChat
Application and research progress of MRI on cerebral small vessel disease and vascular cognitive impairment
KANG Xiaomeng  LI Huabing 

Cite this article as: Kang XM, Li HB. Application and research progress of MRI on cerebral small vessel disease and vascular cognitive impairment[J]. Chin J Magn Reson Imaging, 2022, 13(9): 132-135. DOI:10.12015/issn.1674-8034.2022.09.031.

[Abstract] Cerebral small vessel disease (CSVD), the most common cause of vascular dementia, is a wide range of cerebrovascular diseases with various etiologies. The prevalence of CSVD with age, which affects the quality of life of the elderly. With the development of neuroimaging and the application of more and more new imaging technologies, the early diagnosis of CSVD and its relationship with vascular cognitive impairment have become a research hotspot. This paper reviews the role and research progress of MRI in CSVD and vascular cognitive impairment, in order to provide imaging basis for the clinical diagnosis of CSVD.
[Keywords] magnetic resonance imaging;cerebral small vessel disease;vascular cognitive impairment;neuroimaging markers

KANG Xiaomeng1   LI Huabing2*  

1 Shanxi Medical University, Taiyuan 030001, China

2 Department of MRI, Shanxi Jincheng General Hosptial, Shanxi Medical University, Jincheng 048000, China

*Li HB, E-mail:

Conflicts of interest   None.

Received  2022-05-17
Accepted  2022-09-13
DOI: 10.12015/issn.1674-8034.2022.09.031
Cite this article as: Kang XM, Li HB. Application and research progress of MRI on cerebral small vessel disease and vascular cognitive impairment[J]. Chin J Magn Reson Imaging, 2022, 13(9): 132-135.DOI:10.12015/issn.1674-8034.2022.09.031

Chojdak-Łukasiewicz J, Dziadkowiak E, Zimny A, et al. Cerebral small vessel disease: A review[J]. Adv Clin Exp Med, 2021, 30(3): 349-356. DOI: 10.17219/acem/131216.
Rundek T, Tolea M, Ariko T, et al. Vascular Cognitive Impairment (VCI)[J]. Neurotherapeutics, 2022, 19(1): 68-88. DOI: 10.1007/s13311-021-01170-y.
Cannistraro RJ, Badi M, Eidelman BH, et al. CNS small vessel disease: A clinical review[J]. Neurology, 2019, 92(24): 1146-1156. DOI: 10.1212/WNL.0000000000007654.
Boyle PA, Yu L, Wilson RS, et al. Person-specific contribution of neuropathologies to cognitive loss in old age[J]. Ann Neurol, 2018, 83(1): 74-83. DOI: 10.1002/ana.25123.
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol, 2013, 12(8): 822-838. DOI: 10.1016/S1474-4422(13)70124-8.
Hu L, Liu N. Research Progress on pathogenesis and imaging manifestations of cerebral small vessel disease[J]. Shandong Medical Journal, 2019, 59(13): 102-105. DOI: 10.3969/j.issn.1002-266X.2019.13.029.
Li Q, Zhang LM, Sun HY. Logistic regression analysis on the risk factors of vascular cognitive impairment with lacunar infarct[J]. China Journal of Modern Medicine, 2019, 29(16): 99-102. DOI: 10.3969/j.issn.1005-8982.2019.16.019.
Lü PY, Teng ZJ. Neuroimaging study of vascular cognitive impairment[J]. Chinese Journal of Neuroimmunology Neurology, 2021, 28(6): 437-440. DOI: 10.3969/j.issn.1006-2963.2021.06.003.
Yuan JL, Wang SK, Guo XJ, et al. Disconnections of Cortico-Subcortical Pathways Related to Cognitive Impairment in Patients with Leukoaraiosis: A Preliminary Diffusion Tensor Imaging Study[J]. Eur Neurol, 2017, 78(1-2): 41-47. DOI: 10.1159/000477899.
Chen Y, Wang X, Guan L, et al. Role of White Matter Hyperintensities and Related Risk Factors in Vascular Cognitive Impairment: A Review[J]. Biomolecules, 2021, 11(8): 1102. DOI: 10.3390/biom11081102.
Hu HY, Ou YN, Shen XN, et al. White matter hyperintensities and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 36 prospective studies[J]. Neurosci Biobehav Rev, 2021, 120: 16-27. DOI: 10.1016/j.neubiorev.2020.11.007.
Dounavi ME, Low A, Muniz-Terrera G, et al. Fluid-attenuated inversion recovery magnetic resonance imaging textural features as sensitive markers of white matter damage in midlife adults[J/OL]. Brain Commun, 2022, 4(3) [2022-05-16]. DOI: 10.1093/braincomms/fcac116.
Melazzini L, Mackay CE, Bordin V, et al. White matter hyperintensities classified according to intensity and spatial location reveal specific associations with cognitive performance[J/OL]. Neuroimage Clin, 2021, 30 [2022-05-16]. DOI: 10.1016/j.nicl.2021.102616.
Wardlaw JM, Benveniste H, Nedergaard M, et al. Perivascular spaces in the brain: anatomy, physiology and pathology[J]. Nat Rev Neurol, 2020, 16(3): 137-153. DOI: 10.1038/s41582-020-0312-z.
Arba F, Quinn TJ, Hankey GJ, et al. Enlarged perivascular spaces and cognitive impairment after stroke and transient ischemic attack[J]. Int J Stroke, 2018, 13(1): 47-56. DOI: 10.1177/1747493016666091.
Banerjee G, Kim HJ, Fox Z, et al. MRI-visible perivascular space location is associated with Alzheimer's disease independently of amyloid burden[J]. Brain, 2017, 140(4): 1107-1116. DOI: 10.1093/brain/awx003.
Ding J, Sigurðsson S, Jónsson PV, et al. Large Perivascular Spaces Visible on Magnetic Resonance Imaging, Cerebral Small Vessel Disease Progression, and Risk of Dementia: The Age, Gene/Environment Susceptibility-Reykjavik Study[J]. JAMA Neurol, 2017, 74(9): 1105-1112. DOI: 10.1001/jamaneurol.2017.1397.
Libecap TJ, Zachariou V, Bauer CE, et al. Enlarged Perivascular Spaces Are Negatively Associated With Montreal Cognitive Assessment Scores in Older Adults[J/OL]. Front Neurol, 2022, 13 [2022-05-16]. DOI: 10.3389/fneur.2022.888511.
Valenti R, Del Bene A, Poggesi A, et al. Cerebral microbleeds in patients with mild cognitive impairment and small vessel disease: The Vascular Mild Cognitive Impairment (VMCI)-Tuscany study[J]. J Neurol Sci, 2016, 368: 195-202. DOI: 10.1016/j.jns.2016.07.018.
Frantellizzi V, Pani A, Ricci M, et al. Neuroimaging in Vascular Cognitive Impairment and Dementia: A Systematic Review[J]. J Alzheimers Dis, 2020, 73(4): 1279-1294. DOI: 10.3233/JAD-191046.
Nannoni S, Ohlmeier L, Brown RB, et al. Cognitive impact of cerebral microbleeds in patients with symptomatic small vessel disease[J]. Int J Stroke, 2022, 17(4): 415-424. DOI: 10.1177/17474930211012837.
Ter Telgte A, van Leijsen EMC, Wiegertjes K, et al. Cerebral small vessel disease: from a focal to a global perspective[J]. Nat Rev Neurol, 2018, 14(7): 387-398. DOI: 10.1038/s41582-018-0014-y.
van Leijsen EMC, de Leeuw FE, Tuladhar AM. Disease progression and regression in sporadic small vessel disease-insights from neuroimaging[J]. Clin Sci (Lond), 2017, 131(12): 1191-1206. DOI: 10.1042/CS20160384.
Jiang Y, Wang Y, Yuan Z, et al. Total Cerebral Small Vessel Disease Burden Is Related to Worse Performance on the Mini-Mental State Examination and Incident Dementia: A Prospective 5-Year Follow-Up[J]. J Alzheimers Dis, 2019, 69(1): 253-262. DOI: 10.3233/JAD-181135.
Jokinen H, Koikkalainen J, Laakso HM, et al. Global Burden of Small Vessel Disease-Related Brain Changes on MRI Predicts Cognitive and Functional Decline[J]. Stroke, 2020, 51(1): 170-178. DOI: 10.1161/STROKEAHA.119.026170.
Wang F,Yang N,Peng HY, et al. Characteristics of cognitive impairment in cerebral small vascular disease and its relationship with totalimaging load score[J]. Chinese Journal of Practical Nervous Diseases, 2021, 24(1): 7-12. DOI: 10.12083/SYSJ.2020.24.009
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications[J]. Lancet Neurol, 2019, 18(7):684-696. DOI: 10.1016/S1474-4422(19)30079-1.
Claassen JAHR, Thijssen DHJ, Panerai RB, et al. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation[J]. Physiol Rev, 2021, 101(4): 1487-1559. DOI: 10.1152/physrev.00022.2020.
Shi Y, Thrippleton MJ, Makin SD, et al. Cerebral blood flow in small vessel disease: A systematic review and meta-analysis[J]. J Cereb Blood Flow Metab, 2016, 36(10): 1653-1667. DOI: 10.1177/0271678X16662891.
Wong SM, Jansen JFA, Zhang CE, et al. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease[J/OL]. Neurology, 2019, 92(15) [2022-05-16]. DOI: 10.1212/WNL.0000000000007263.
Stewart CR, Stringer MS, Shi Y, et al. Associations Between White Matter Hyperintensity Burden, Cerebral Blood Flow and Transit Time in Small Vessel Disease: An Updated Meta-Analysis[J/OL]. Front Neurol, 2021, 12 [2022-05-16]. DOI: 10.3389/fneur.2021.647848.
Meng F, Yang Y, Jin G. Research Progress on MRI for White Matter Hyperintensity of Presumed Vascular Origin and Cognitive Impairment[J/OL]. Front Neurol, 2022, 13 [2022-05-16]. DOI: 10.3389/fneur.2022.865920.
Blair GW, Thrippleton MJ, Shi Y, et al. Intracranial hemodynamic relationships in patients with cerebral small vessel disease[J/OL]. Neurology, 2020, 94(21) [2022-05-16]. DOI: 10.1212/WNL.0000000000009483.
Sam K, Crawley AP, Conklin J, et al. Development of White Matter Hyperintensity Is Preceded by Reduced Cerebrovascular Reactivity[J]. Ann Neurol, 2016, 80(2): 277-285. DOI: 10.1002/ana.24712.
Sam K, Peltenburg B, Conklin J, et al. Cerebrovascular reactivity and white matter integrity[J]. Neurology, 2016, 87(22): 2333-2339. DOI: 10.1212/WNL.0000000000003373.
Atwi S, Shao H, Crane DE, et al. BOLD-based cerebrovascular reactivity vascular transfer function isolates amplitude and timing responses to better characterize cerebral small vessel disease[J/OL]. NMR Biomed, 2019, 32(3) [2022-05-16]. DOI: 10.1002/nbm.4064.
Poublanc J, Shafi R, Sobczyk O, et al. Normal BOLD Response to a Step CO2 Stimulus After Correction for Partial Volume Averaging[J/OL]. Front Physiol, 2021, 12 [2022-05-16]. DOI: 10.3389/fphys.2021.639360.
Zhang CE, Wong SM, Uiterwijk R, et al. Blood-brain barrier leakage in relation to white matter hyperintensity volume and cognition in small vessel disease and normal aging[J]. Brain Imaging Behav, 2019, 13(2): 389-395. DOI: 10.1007/s11682-018-9855-7.
Zhang CE, Wong SM, van de Haar HJ, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease[J]. Neurology, 2017, 88(5): 426-432. DOI: 10.1212/WNL.0000000000003556.
Walsh J, Tozer DJ, Sari H, et al. Microglial activation and blood-brain barrier permeability in cerebral small vessel disease[J]. Brain, 2021, 144(5): 1361-1371. DOI: 10.1093/brain/awab003.
Kerkhofs D, Wong SM, Zhang E, et al. Blood-brain barrier leakage at baseline and cognitive decline in cerebral small vessel disease: a 2-year follow-up study[J]. Geroscience, 2021, 43(4): 1643-1652. DOI: 10.1007/s11357-021-00399-x.
Smith EE, Schneider JA, Wardlaw JM, et al. Cerebral microinfarcts: the invisible lesions[J]. Lancet Neurol, 2012, 11(3): 272-282. DOI: 10.1016/S1474-4422(11)70307-6.
Kraushar D, Molad J, Hallevi H, et al. Cerebral microinfarcts disruption of remote cortical thickness[J/OL]. J Neurol Sci, 2021, 420 [2022-05-16]. DOI: 10.1016/j.jns.2020.117170.
Hahn A, Lanzenberger R, Kasper S. Making Sense of Connectivity[J]. Int J Neuropsychopharmacol, 2019, 22(3): 194-207. DOI: 10.1093/ijnp/pyy100.
Zhang F, Daducci A, He Y, et al. Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: A review[J/OL]. Neuroimage, 2022, 249 [2022-05-16]. DOI: 10.1016/j.neuroimage.2021.118870.
Frey BM, Petersen M, Schlemm E, et al. White matter integrity and structural brain network topology in cerebral small vessel disease: The Hamburg city health study[J]. Hum Brain Mapp, 2021, 42(5): 1406-1415. DOI: 10.1002/hbm.25301.
Lu T, Wang Z, Cui Y, et al. Disrupted Structural Brain Connectome Is Related to Cognitive Impairment in Patients With Ischemic Leukoaraiosis[J/OL]. Front Hum Neurosci, 2021, 15 [2022-05-16]. DOI: 10.3389/fnhum.2021.654750.
Shen J, Tozer DJ, Markus HS, et al. Network Efficiency Mediates the Relationship Between Vascular Burden and Cognitive Impairment: A Diffusion Tensor Imaging Study in UK Biobank[J]. Stroke, 2020, 51(6): 1682-1689. DOI: 10.1161/STROKEAHA.119.028587.
Chen X, Huang L, Ye Q, et al. Disrupted functional and structural connectivity within default mode network contribute to WMH-related cognitive impairment[J/OL]. Neuroimage Clin, 2019, 24 [2022-05-16]. DOI: 10.1016/j.nicl.2019.102088.
Huang H, Zhao K, Zhu W, et al. Abnormal Cerebral Blood Flow and Functional Connectivity Strength in Subjects With White Matter Hyperintensities[J/OL]. Front Neurol, 2021, 12 [2022-05-16]. DOI: 10.3389/fneur.2021.752762.

PREV Research progress of new MRI technology in prognosis evaluation of neonatal hypoxic-ischemic encephalopathy
NEXT Research progress of T2-FLAIR mismatch sign in predicting molecular typing of lower-grade glioma

Tel & Fax: +8610-67113815    E-mail: