Share:
Share this content in WeChat
X
Review
Research progress of new MRI technology in prognosis evaluation of neonatal hypoxic-ischemic encephalopathy
HE Qing  WANG Juan  MA Xuejin  LI Shiguang 

Cite this article as: He Q, Wang J, Ma XJ, et al. Research progress of new MRI technology in prognosis evaluation of neonatal hypoxic-ischemic encephalopathy[J]. Chin J Magn Reson Imaging, 2022, 13(9): 127-131. DOI:10.12015/issn.1674-8034.2022.09.030.


[Abstract] Neonatal hypoxic-ischemic encephalopathy (HIE) is characterized by high mortality, many sequelae, and poor prognosis, early assessment of neurological development of HIE is of great value in diagnosis, treatment, intervention, and improvement of prognosis. MRI is currently the most valuable imaging tool for assessing the prognosis of HIE helping to predict the early and long-term neurodevelopmental outcomes of HIE. This paper aims to explore the research progress of new MRI technologies, such as diffusion-weighted imaging, diffusion tensor imaging, diffusion kurtosis imaging, magnetic resonance spectroscopy, amide proton transfer imaging, arterial spin labeling, resting-state functional magnetic resonance imaging, radiomics, and deep learning in the prognosis evaluation of HIE.
[Keywords] neonatal hypoxic-ischemic encephalopathy;amide proton transfer imaging;arterial spin labeling;resting-state functional magnetic resonance imaging;radiomics;deep learning;prognostic evaluation

HE Qing1   WANG Juan1   MA Xuejin1   LI Shiguang1, 2*  

1 Department of Radiology, the Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China

2 Department of Imaging, the Second People's Hospital of Guiyang, Guiyang 550023, China

*Li SG, E-mail: imaging_shiguangli@163.com

Conflicts of interest   None.

Received  2022-04-24
Accepted  2022-08-10
DOI: 10.12015/issn.1674-8034.2022.09.030
Cite this article as: He Q, Wang J, Ma XJ, et al. Research progress of new MRI technology in prognosis evaluation of neonatal hypoxic-ischemic encephalopathy[J]. Chin J Magn Reson Imaging, 2022, 13(9): 127-131.DOI:10.12015/issn.1674-8034.2022.09.030

[1]
Michaeli J, Srebnik N, Zilberstein Z, et al. Intrapartum fetal monitoring and perinatal risk factors of neonatal hypoxic-ischemic encephalopathy[J]. Arch Gynecol Obstet, 2021, 303(2): 409-417. DOI: 10.1007/s00404-020-05757-2.
[2]
Ba RH, Mao J. Correlation between magnetic resonance imaging score and clinical grading in neonatal hypoxic-ischemic encephalopathy[J]. Chin J Contemp Pediatr, 2018, 20(2): 83-90. DOI: 10.7499/j.issn.1008-8830.2018.02.001.
[3]
Maxwell JR, Zimmerman AJ, Pavlik N, et al. Neonatal hypoxic-ischemic encephalopathy yields permanent deficits in learning acquisition: a preclinical touchscreen assessment[J/OL]. Front Pediatr, 2020[2022-07-08]. https://doi.org/10.3389/fped.2020.00289 DOI: 10.3389/fped.2020.00289.
[4]
Peeples ES, Rao R, Dizon MLV, et al. Predictive models of neurodevelopmental outcomes after neonatal hypoxic-ischemic encephalopathy[J/OL]. Pediatrics, 2021[2022-07-08], https://doi.org/10.1542/peds.2020-022962. DOI: 10.1542/peds.2020-022962.
[5]
Chawla D. Biomarkers for prognostication in hypoxic-ischemic encephalopathy[J]. Indian J Pediatr, 2020, 87(10): 777-778. DOI: 10.1007/s12098-020-03486-7.
[6]
Tharmapoopathy P, Chisholm P, Barlas A, et al. In clinical practice, cerebral MRI in newborns is highly predictive of neurodevelopmental outcome after therapeutic hypothermia[J]. Eur J Paediatr Neurol, 2020, 25: 127-133. DOI: 10.1016/j.ejpn.2019.12.018.
[7]
de Wispelaere LA, Ouwehand S, Olsthoorn M, et al. Electroencephalography and brain magnetic resonance imaging in asphyxia comparing cooled and non-cooled infants[J]. Eur J Paediatr Neurol, 2019, 23(1): 181-190. DOI: 10.1016/j.ejpn.2018.09.001.
[8]
Longo D, Bottino F, Lucignani G, et al. DTI parameters in neonates with hypoxic-ischemic encephalopathy after total body hypothermia[J]. J Matern Fetal Neonatal Med, 2020: 1-8. DOI: 10.1080/14767058.2020.1846180.
[9]
Bach AM, Fang AY, Bonifacio S, et al. Early magnetic resonance imaging predicts 30-month outcomes after therapeutic hypothermia for neonatal encephalopathy[J]. J Pediatr, 2021, 238: 94-101.e1. DOI: 10.1016/j.jpeds.2021.07.003.
[10]
Piñeiro-Ramos JD, Núñez-Ramiro A, Llorens-Salvador R, et al. Metabolic phenotypes of hypoxic-ischemic encephalopathy with normal vs. pathologic magnetic resonance imaging outcomes[J]. Metabolites, 2020, 10(3): 109. DOI: 10.3390/metabo10030109.
[11]
Greco P, Nencini G, Piva I, et al. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future[J]. Acta Neurol Belg, 2020, 120(2): 277-288. DOI: 10.1007/s13760-020-01308-3.
[12]
Bano S, Chaudhary V, Garga UC. Neonatal hypoxic-ischemic encephalopathy: a radiological review[J]. J Pediatr Neurosci, 2017, 12(1): 1-6. DOI: 10.4103/1817-1745.205646.
[13]
Weeke LC, Groenendaal F, Mudigonda K, et al. A novel magnetic resonance imaging score predicts neurodevelopmental outcome after perinatal asphyxia and therapeutic hypothermia[J]. J Pediatr, 2018, 192: 33-40. DOI: 10.1016/j.jpeds.2017.09.043.
[14]
Zhang L, Gao J, Zhao YB, et al. The application of magnetic resonance imaging and diffusion-weighted imaging in the diagnosis of hypoxic-ischemic encephalopathy and kernicterus in premature infants[J]. Transl Pediatr, 2021, 10(4): 958-966. DOI: 10.21037/tp-21-128.
[15]
Wei RL, Wang CN, He FP, et al. Prediction of poor outcome after hypoxic-ischemic brain injury by diffusion-weighted imaging: a systematic review and meta-analysis[J/OL]. PLoS One, 2019 [2022-07-08]. https://doi.org/10.1371/journal.pone.0226295. DOI: 10.1371/journal.pone.0226295.
[16]
Han YX, Wu P, He XN, et al. Progress of diffusion imaging in neonatal hypoxic-ischemic encephalopathy[J]. Chin J Magn Reson Imaging, 2019, 10(10): 783-786. DOI: 10.12015/issn.1674-8034.2019.10.014.
[17]
Wang BH, Geng LJ, Liu J. The relationship between MRI diffusion value and long-term neuroprognosis in the neonates with hypoxic-ischemic encephalopathy treated with mild hypothermia treatment[J]. Chin J Crit Care Med, 2021, 41(6): 484-489. DOI: 10.3969/j.issn.1002-1949.2021.06.006.
[18]
Wang RZ, Xi YL, Yang M, et al. Application of apparent diffusion coefficient histogram in moderate to severe neonatal hypoxic-ischemic encephalopathy[J]. Natl Med J China, 2021, 101(9): 624-629. DOI: 10.3760/cma.j.cn112137-20200622-01911.
[19]
Wang TF, Gao YB. The application value of MRI apparent diffusion coefficient histogram parameters in the prognostic evaluation of neonatal hypoxic-ischemic encephalopathy[J]. J Rare Uncommon Dis, 2022, 29(5): 38-41. DOI: 10.3969/j.issn.1009-3257.2022.05.014.
[20]
Xiao J, He XN, Tian J, et al. Diffusion kurtosis imaging and pathological comparison of early hypoxic-ischemic brain damage in newborn piglets[J/OL]. Sci Rep, 2020 [2022-07-08]. https://doi.org/10.1038/s41598-020-74387-0. DOI: 10.1038/s41598-020-74387-0.
[21]
Gerner GJ, Newman EI, Burton VJ, et al. Correlation between white matter injury identified by neonatal diffusion tensor imaging and neurodevelopmental outcomes following term neonatal asphyxia and therapeutic hypothermia: an exploratory pilot study[J]. J Child Neurol, 2019, 34(10): 556-566. DOI: 10.1177/0883073819841717.
[22]
Wang HX, Meng N, Ren JP, et al. The application value of magnetic resonance diffusion tensor imaging in neonatal hypoxic-ischemic encephalopathy[J]. Radiol Pract, 2019, 34(3): 322-327. DOI: 10.13609/j.cnki.1000-0313.2019.03.016.
[23]
Li HX, Feng X, Wang Q, et al. Diffusion tensor imaging assesses white matter injury in neonates with hypoxic-ischemic encephalopathy[J]. Neural Regen Res, 2017, 12(4): 603-609. DOI: 10.4103/1673-5374.205102.
[24]
Dibble M, O'Dea MI, Hurley T, et al. Diffusion tensor imaging in neonatal encephalopathy: a systematic review[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(5): 480-488. DOI: 10.1136/archdischild-2019-318025.
[25]
Ma L, Si Y. Study on the correlation between MRI diffusion tensor imaging and the diagnosis of neonatal hypoxic ischemic encephalopathy[J]. Chin J Woman Child Heal Res, 2020, 31(3): 307-311. DOI: 10.3969/j.issn.1673-5293.2020.03.005.
[26]
He XN, Xiao J, Tian J, et al. Diffusion kurtosis imaging of leptin intervention in early hypoxic-ischemic brain edema[J]. Neuroscience, 2020, 431: 176-183. DOI: 10.1016/j.neuroscience.2020.02.009.
[27]
Yin JZ, Sun HZ, Wang ZY, et al. Diffusion kurtosis imaging of acute infarction: comparison with routine diffusion and follow-up MR imaging[J]. Radiology, 2018, 287(2): 651-657. DOI: 10.1148/radiol.2017170553.
[28]
Lampinen B, Lätt J, Wasselius J, et al. Time dependence in diffusion MRI predicts tissue outcome in ischemic stroke patients[J]. Magn Reson Med, 2021, 86(2): 754-764. DOI: 10.1002/mrm.28743.
[29]
Wang JN, Li J, Yin XP, et al. The value of arterial spin labeling imaging in the classification and prognostic evaluation of neonatal hypoxic-ischemic encephalopathy[J]. Curr Neurovasc Res, 2021, 18(3): 307-313. DOI: 10.2174/1567202618666210920112001.
[30]
Liu N, Li YZ, Tong J, et al. Value of three-dimensional arterial spin labeling in the early diagnosis of neonatal hypoxic-ischemic encephalopathy[J]. J China Med Univ, 2021, 50(8): 747-751. DOI: 10.12007/j.issn.0258-4646.2021.08.016.
[31]
Zheng Q, Viaene AN, Freeman CW, et al. Radiologic-pathologic evidence of brain injury: hypoperfusion in the Papez circuit results in poor neurodevelopmental outcomes in neonatal hypoxic ischemic encephalopathy[J]. Childs Nerv Syst, 2021, 37(1): 63-68. DOI: 10.1007/s00381-020-04795-0.
[32]
Li YZ, Liu N, Tong J, et al. The value of arterial spin labeling in the outcome of full-term neonates with hypoxic-ischemic encephalopathy[J]. J China Med Univ, 2019, 48(9): 812-816. DOI: 10.12007/j.issn.0258-4646.2019.09.010.
[33]
Proisy M, Corouge I, Legouhy A, et al. Changes in brain perfusion in successive arterial spin labeling MRI scans in neonates with hypoxic-ischemic encephalopathy[J/OL]. Neuroimage Clin, 2019 [2022-07-08]. https://doi.org/10.1016/j.nicl.2019.101939. DOI: 10.1016/j.nicl.2019.101939.
[34]
Sun YF, Cai C. Research progress of treatment for neonatal hypoxic ischemic encephalopathy[J]. Chin J Appl Clin Pediatr, 2021, 36(8): 631-634. DOI: 10.3760/cma.j.cn101070-20200207-00126.
[35]
Manias KA, Peet A. What is MR spectroscopy?[J]. Arch Dis Child Educ Pract Ed, 2018, 103(4): 213-216. DOI: 10.1136/archdischild-2017-312839.
[36]
Groenendaal F. The prognostic value of proton magnetic resonance spectroscopy in term newborns treated with therapeutic hypothermia following asphyxia[J]. Magn Reson Imaging, 2018, 48: 139-140. DOI: 10.1016/j.mri.2018.01.005.
[37]
Mitra S, Kendall GS, Bainbridge A, et al. Proton magnetic resonance spectroscopy lactate/N-acetylaspartate within 2 weeks of birth accurately predicts 2-year motor, cognitive and language outcomes in neonatal encephalopathy after therapeutic hypothermia[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(4): F424-F432. DOI: 10.1136/archdischild-2018-315478.
[38]
Barta H, Jermendy A, Kolossvary M, et al. Prognostic value of early, conventional proton magnetic resonance spectroscopy in cooled asphyxiated infants[J]. BMC Pediatr, 2018, 18(1): 302. DOI: 10.1186/s12887-018-1269-6.
[39]
Lally PJ, Montaldo P, Oliveira V, et al. Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study[J]. Lancet Neurol, 2019, 18(1): 35-45. DOI: 10.1016/S1474-4422(18)30325-9.
[40]
Zou R, Xiong T, Zhang L, et al. Proton magnetic resonance spectroscopy biomarkers in neonates with hypoxic-ischemic encephalopathy: a systematic review and meta-analysis[J/OL]. Front Neurol, 2018 [2022-07-08]. https://doi.org/10.3389/fneur.2018.00732. DOI: 10.3389/fneur.2018.00732.
[41]
Chen SJ, Liu XL, Mei YJ, et al. Early identification of neonatal mild hypoxic-ischemic encephalopathy by amide proton transfer magnetic resonance imaging: a pilot study [J/OL]. Eur J Radiol, 2019[2022-07-08]. https://doi.org/10.1016/j.ejrad.2019.07.021. DOI: 10.1016/j.ejrad.2019.07.021.
[42]
Zheng Y, Wang XM. Evaluation of brain injury in neonates by magnetization transfer imaging combined amide proton transfer imaging: a preliminary study[J]. Chin J Magn Reson Imaging, 2017, 8(3): 189-195. DOI: 10.12015/issn.1674-8034.2017.03.006.
[43]
Zheng Y, Wang XM. Measurement of lactate content and amide proton transfer values in the basal Ganglia of a neonatal piglet hypoxic-ischemic brain injury model using MRI[J]. AJNR Am J Neuroradiol, 2017, 38(4): 827-834. DOI: 10.3174/ajnr.A5066.
[44]
Zheng Y, Wang XM. The applicability of amide proton transfer imaging in the nervous system: focus on hypoxic-ischemic encephalopathy in the neonate[J]. Cell Mol Neurobiol, 2018, 38(4): 797-807. DOI: 10.1007/s10571-017-0552-7.
[45]
Wen XY, Zhang H, Li G, et al. First-year development of modules and hubs in infant brain functional networks[J]. Neuroimage, 2019, 185: 222-235. DOI: 10.1016/j.neuroimage.2018.10.019.
[46]
Wen XY, Wang RF, Yin WY, et al. Development of dynamic functional architecture during early infancy[J]. Cereb Cortex, 2020, 30(11): 5626-5638. DOI: 10.1093/cercor/bhaa128.
[47]
Linke AC, Wild C, Zubiaurre-Elorza L, et al. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months[J]. Neuroimage Clin, 2018, 18: 399-406. DOI: 10.1016/j.nicl.2018.02.002.
[48]
Li HX, Yu M, Zheng AB, et al. Primary comparative study on the functional properties of cerebral resting state networks in neonates with hypoxic ischemic encephalopathy[J]. Chin J Behav Med Brain Sci, 2018, 27(9):814-819. DOI: 10.3760/cma.j.issn.1674-6554.2018.09.009.
[49]
Jiang L, El-Metwally D, Sours Rhodes C, et al. Alterations in motor functional connectivity in Neonatal Hypoxic Ischemic Encephalopathy[J]. Brain Inj, 2022, 36(2): 287-294. DOI: 10.1080/02699052.2022.2034041.
[50]
Wang YY, Wang Y, Hua GW, et al. Changes of brain functional network in neonates with different degrees of hypoxic-ischemic encephalopathy[J]. Chin J Behav Med Brain Sci, 2021, 30(6):504-509. DOI: 10.3760/cma.j.cn371468-20201224-00082.
[51]
Zhao XZ, Zhao XM. Deep learning of brain magnetic resonance images: a brief review[J]. Methods, 2021, 192: 131-140. DOI: 10.1016/j.ymeth.2020.09.007.
[52]
Davendralingam N, Sebire NJ, Arthurs OJ, et al. Artificial intelligence in paediatric radiology: future opportunities[J/OL]. Br J Radiol, 2021 [2022-07-08]. https://doi.org/10.1259/bjr.20200975. DOI: 10.1259/bjr.20200975.
[53]
Hinojosa-Rodríguez M, Harmony T, Carrillo-Prado C, et al. Clinical neuroimaging in the preterm infant: diagnosis and prognosis[J]. Neuroimage Clin, 2017, 16: 355-368. DOI: 10.1016/j.nicl.2017.08.015.
[54]
Adeli E, Meng Y, Li G, et al. Multi-task prediction of infant cognitive scores from longitudinal incomplete neuroimaging data[J]. Neuroimage, 2019, 185: 783-792. DOI: 10.1016/j.neuroimage.2018.04.052.
[55]
Gui L, Loukas S, Lazeyras F, et al. Longitudinal study of neonatal brain tissue volumes in preterm infants and their ability to predict neurodevelopmental outcome[J]. Neuroimage, 2019, 185: 728-741. DOI: 10.1016/j.neuroimage.2018.06.034.
[56]
Guo T, Duerden EG, Adams E, et al. Quantitative assessment of white matter injury in preterm neonates: association with outcomes[J]. Neurology, 2017, 88(7): 614-622. DOI: 10.1212/WNL.0000000000003606.
[57]
Feng KY, Rowell AC, Andres A, et al. Diffusion tensor MRI of white matter of healthy full-term newborns: relationship to neurodevelopmental outcomes[J]. Radiology, 2019, 292(1): 179-187. DOI: 10.1148/radiol.2019182564.
[58]
Murphy K, van der Aa NE, Negro S, et al. Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy[J]. Neuroimage Clin, 2017, 14: 222-232. DOI: 10.1016/j.nicl.2017.01.005.
[59]
Weiss RJ, Bates SV, Song YN, et al. Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy[J]. J Transl Med, 2019, 17(1): 385. DOI: 10.1186/s12967-019-2119-5.

PREV Research progress of MRI on myelin oligodendrocyte glycoprotein antibody disease in children
NEXT Application and research progress of MRI on cerebral small vessel disease and vascular cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn