Share:
Share this content in WeChat
X
Experience Exchange
The value of diffusion kurtosis imaging in the early diagnosis of Parkinson's disease
DAI Kaifeng  CHEN Xiangrong  XU Shuhui  LIN qiansen  CAI Yali  CHEN Jieyun 

Cite this article as: Dai KF, Chen XR, Xu SH, et al. The value of diffusion kurtosis imaging in the early diagnosis of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2022, 13(9): 81-85. DOI:10.12015/issn.1674-8034.2022.09.015.


[Abstract] Objective To explore the value of diffusion kurtosis imaging (DKI) in the early diagnosis of Parkinson's disease (PD).Materials and Methods Fifty patients with PD diagnosed by PD specialty in our hospital from January 2018 to June 2021 were randomly selected as PD group, and 50 healthy people who came to our hospital for physical examination at the same time were selected as healthy control (HC) group. The mean kurtosis (MK) value, axial kurtosis (Ka) value, radial kurtosis (Kr) value, mean diffusivity (MD) value, axial diffusivity (Da) value, radial diffusivity (Dr) value and fractional anisotropy (FA) value of brain nuclei DKI parameters in PD group and HC group were compared, and the correlation with Mini-mental State Examination (MMSE) score was compared.Results Except the Ka value of the red nucleus, the Kr value of the thalamus, putamen and globus pallidus, the other DKI parameters of the red nucleus, substantia nigra, thalamus, putamen, globus pallidus and caudate nucleus among the DKI parameters of the two groups were significantly different (P<0.05). The area under the curve (AUC) of the MK value of the red nucleus and substantia nigra in PD patients is the largest, followed by the MD value of substantia nigra, Ka value of substantia nigra, Dr value of substantia nigra and MK value of red nucleus according to the area under the curve (AUC). The AUC were 1.000, 0.992, 0.818, 0.808 and 0.791, respectively. The correlation analysis between DKI parameters and MMSE score showed that MK value of substantia nigra (r=0.572, P=0.043) and MD value (r=0.827, P=0.039), MK value of red nucleus (r=0.738, P=0.042) and MD value (r=0.899, P=0.031) are positively correlated with MMSE score, and there was no significant correlation between other DKI parameters and MMSE score.Conclusions The DKI can be used in the diagnosis of PD, and the parameters of substantia nigra DKI can be used as a priority index for the differential diagnosis of PD and guiding the severity of PD.
[Keywords] diffusion kurtosis imaging;Parkinson's disease;mean kurtosis;axial kurtosis;radial kurtosis;mean diffusivity;axial diffusivity;radial diffusivity;fractional anisotropy

DAI Kaifeng   CHEN Xiangrong   XU Shuhui   LIN qiansen   CAI Yali   CHEN Jieyun*  

Department of Imaging, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China

*Chen JY, E-mail: 2207934327@qq.com

Conflicts of interest   None.

Received  2022-03-03
Accepted  2022-09-06
DOI: 10.12015/issn.1674-8034.2022.09.015
Cite this article as: Dai KF, Chen XR, Xu SH, et al. The value of diffusion kurtosis imaging in the early diagnosis of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2022, 13(9): 81-85.DOI:10.12015/issn.1674-8034.2022.09.015

[1]
Yao JQ, Lu P, Jiang L, et al. Clinical value of magnetic resonance DKI technique in the nigrostriatal region of Parkinson's disease patients and its correlation with clinical progress[J]. Journal of Molecular Imaging, 2020, 43(2): 230-234. DOI: 10.12122/j.issn.1674-4500.2020.02.11.
[2]
Sun YQ, Zhang Q, Jiang Z, et al. Parkinson's disease: diffusion kurtosis imaging and the correlation with clinical manifestations[J]. Natl Med J China, 2017, 97(45): 3534-3537. DOI: 10.3760/cma.j.issn.0376-2491.2017.45.004.
[3]
Li Y, Si HN, Tian YL, et al. Application value of diffusion kurtosis imaging in diagnosis of early Parkinson's disease[J]. Chin J Magn Reson Imaging, 2019, 10(7): 486-490. DOI: 10.12015/issn.1674-8034.2019.07.002.
[4]
Sun YQ. Parkinson's disease: diffusion kurtosis imaging of deep brain nucleus and the correlation with clinical manifestations[D]. Suzhou: Soochow University, 2016. DOI: 10.7666/d.D01004982.
[5]
Zhang ZW, Li YF, Pan JL, et al. The value research of diffusion kurtosis imaging parameters in diagnosing Parkinson's disease[J]. Chinese Journal of General Practice, 2020, 18(2): 273-276. DOI: 10.16766/j.cnki.issn.1674-4152.000000.
[6]
Obeso JA, Stamelou M, Goetz CG, et al. Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy[J]. Mov Disord, 2017, 32(9): 1264-1310. DOI: 10.1002/mds.27115.
[7]
Liu Y, Wang H, Ma JX. The value of magnetic resonance diffusion tensor imaging and diffusion kurtosis imaging in the diagnosis of Parkinson's disease[J]. J Med Imaging, 2020, 30(3): 358-362.
[8]
Stenberrg J, Eikenes L, Kent G, et al. Acute Diffusion Tensor and Kurtosis Imaging and Outcome following Mild and Traumatic Brain Injury[J]. J Neurotrauma, 2021, 38(18): 2560-2571. DOI: 10.1089/neu.2021.0074.
[9]
Pogosbekian EL, Pronin IN, Zakharova NE, et al. Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading[J]. Neuroradiology, 2021, 63(8): 1241-1251. DOI: 10.1007/s00234-020-02613-7.
[10]
Sun QY, Meng Y, Zhang D. A preliminary study of diffusion kurtosis imaging and quantitative magnetic susceptibility mapping in the diagnosis of Parkinson's disease[J]. J Pract Radio, 2018, 34(11): 1655-1659. DOI: 10.3969/j.issn.1002-1671.2018.11.001.
[11]
Xu MT, Yang XH, Yang J, et al. Value of Diffusion Kurtosis Imaging in Glioma Diagnosis and Prognosis Evaluation[J]. Journal of Practical Cancer, 2021, 36(7): 1198-1201. DOI: 10.3969/j.issn.1001-5930.2021.07.039.
[12]
Kamagata K, Tomiyama H, Motoi Y, et al. Diffusional kurtosis imaging of cingulate fibers in Parkinson disease: Comparison with conventional diffusion tensor imaging[J]. Magn Reson Imaging, 2013, 31(9): 1501-1506. DOI: 10.1016/j.mri.2013.06.009.
[13]
Wang L, Liu X, Wu SH, et al. Changes in the microstructure and function of brain tissue in PD by diffusionkurtosis imaging[J]. Journal of Mechanics in Medicine and Biology, 2021, 21(10): 1-24. DOI: 10.1142/S0219519421400625.
[14]
Koji K, Christina A, Taku H, et al. Advanced diffusion magnetic resonance imaging in patients with Alzheimer's and Parkinson's diseases[J]. Nerve Regeneration Research, 2020, 15(9): 1590-1600. DOI: 10.4103/1673-5374.276326.
[15]
Surova Y, Nilsson M, Lampinen B, et al. Alteration of putaminal fractional anisotropy in Parkinson's disease: a longitudinal diffusion kurtosis imaging study[J]. Neuroradiology, 2018, 60(3): 247-254. DOI: 10.1007/s00234-017-1971-3.
[16]
Karnar A, Ruda-Kucerova J, Drazanova E, et al. Late-stage α-synuclein accumulation in TNWT-61 mouse model of Parkinson's disease detected by diffusion kurtosis imaging[J]. Journal of Neurochemistry, 2016, 136(6): 1259-1269. DOI: 10.1111/jnc.13500.
[17]
Surova Y, Nilsson M, Lampinen B, et al. Alterations of Diffusion Kurtosis and Neurite Density Measures in Deep Grey Matter and White Matter in Parkinson's Disease[J]. PLoS ONE, 2016, 6(30): 1-19. DOI: 10.1371/journal.pone.0157755.
[18]
Bai XQ, Zhou C, Guo T, et al. Progressive microstructural alterations in subcortical nuclei in Parkinson's disease: A diffusion magnetic resonance imaging study[J]. Parkinsonism Relat Disord, 2021, 8(88): 8882-8889. DOI: 10.1016/j.parkreldis.2021.06.003.
[19]
Yasaka K, Kamagata K, Ogawa T, et al. Parkinson's disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation[J]. Neuroradiology, 2021, 63(9): 1451-1462. DOI: 10.1007/s00234-021-02648-4.
[20]
Stephen W. Kurtosis imaging reveals microstructural changes of late-stage α-synuclein accumulation in a mouse model of Parkinson's disease[J]. J Neurochem, 2016, 136(6): 1117-1118. DOI: 10.1111/jnc.13522.
[21]
Hattori A, Kamagata K, Kirino E, et al. White matter alterations in adult with autism spectrum disorder evaluated using diffusion kurtosis imaging[J]. Neuroradiology, 2019, 61(12): 1343-1353. DOI: 10.1007/s00234-019-02238-5.
[22]
Hansen B, Khan AR, Shemesh N, et al. White matter biomarkers from fast protocols using axially symmetric diffusion kurtosis imaging[J/OL]. NMR in Biomedicine, 2017, 30(9) [2022-03-02]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.3741. DOI: 10.1002/nbm.3741.
[23]
Peng Q, Tang W, Huabng Y, et al. Diffusion kurtosis imaging: correlation analysis of quantitative model parameters with molecular features in advanced lung adenocarcinoma[J]. Chinese Medical Journal (English edition), 2020, 133(20): 2403-2409. DOI: 10.1097/CM9.0000000000001074.
[24]
Li T, Yu T, Li L, et al. Use of diffusion kurtosis imaging and quantitative dynamic contrast-enhanced MRI for the differentiation of breast tumors[J]. J Magn Reson Imaging, 2018, 48(5): 1358-1366. DOI: 10.1002/jmri.26059.
[25]
Si HN, Tian YL, Wang XC, et al. Comparative study of diffusion kurtosis imaging in deep brain nucleus in different subtypes of Parkinson's disease[J]. Chin J Neurol, 2019, 52(5): 379-386. DOI: 10.3760/cma.j.issn.1006-7876.2019.05.004.
[26]
Amit K, Jana RK, Eva D, et al. Diffusion kurtosis imaging detects the time-dependent progress of pathological changes in the oral rotenone mouse model of Parkinson's disease[J]. Journal of Neurochemistry, 2021, 158(3): 779-797. DOI: 10.1111/jnc.15449.
[27]
Minsterova AS, Kllobusiakova P, Pies A, et al. Patterns of diffusion kurtosis changes in Parkinson's disease subtypes[J]. Parkinsonism Relat Disord, 2020, 81: 96-102. DOI: 10.1016/j.parkreldis.2020.10.032.

PREV Application of multi-shot echo planar imaging diffusion weighted imaging in the skull base
NEXT Value of diffusion-weighted imaging combined with diffusion kurtosis imaging in the hierarchical diagnosis and prognosis assessment of glioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn