Share this content in WeChat
Clinical Article
Identification of triangular fibrocartilage complex injury based on MRI radiomics model
TENG Peihong  ZHANG Butian  YANG Huimin  REN Lingling  LI Xiaojing  BAI Yingjie  LIU Guifeng 

Cite this article as: Teng PH, Zhang BT, Yang HM, et al. Identification of triangular fibrocartilage complex injury based on MRI radiomics model[J]. Chin J Magn Reson Imaging, 2022, 13(9): 58-62. DOI:10.12015/issn.1674-8034.2022.09.011.

[Abstract] Objective To develop a MRI-based radiomics model to evaluate the diagnostic efficiency of the injury of triangular fibrocartilage complex (TFCC).Materials and Methods In this retrospective study, 100 cases (injury/non-injury: 50/50) were enrolled from China-Japan Union Hospital of Jilin University within January 2019 to December 2021. All patients had high resolution 3.0 T MRI examination of the wrist. Radiomics features of each patient were extracted from T2-weighted coronal imaging by manual segmentation. The Mann-Whitney U test and least absolute shrinkage and selection operator (LASSO) algorithm were used to eliminate irrelevant and redundant features, to additionally choose the significant features. The most significant parameters were used to build the prediction model by support vector machine (SVM) classifier. Predictive performance of the model was validated using the area under the receiver operating characteristics (ROC) curve (AUC), accuracy, sensitivity and specificity.Results A total of 88 initial radiomics features were extracted from each image. Twelve relevant radiomic features were selected based on the Mann-Whitney U test and LASSO algorithm. The classifier constructed with SVM achieved an AUC of 0.88 based on the most significant features, the accuracy, sensitivity and specificity were 90%, 92% and 100% respectively. The radiomics model exhibited good performance in predicting the injury of TFCC.Conclusions The MRI-based radiomics model could provide a non-invasive tool to identify the injury of TFCC and improve the detection rate of it.
[Keywords] wrist joint;triangular fibrocartilage complex;radiomics;magnetic resonance imaging;least absolute shrinkage and selection operator;support vector machine

TENG Peihong   ZHANG Butian   YANG Huimin   REN Lingling   LI Xiaojing   BAI Yingjie   LIU Guifeng*  

Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130000, China

*Liu GF, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China Youth Science Fund (No. 82001880); State Key Laboratory of Electroanalytical Chemistry Open Project Fund (No. SKLEAC202101); Special Fund for Clinical Research of Wu Jieping Medical Foundation (No. 320.6750.19089-38).
Received  2022-06-03
Accepted  2022-09-14
DOI: 10.12015/issn.1674-8034.2022.09.011
Cite this article as: Teng PH, Zhang BT, Yang HM, et al. Identification of triangular fibrocartilage complex injury based on MRI radiomics model[J]. Chin J Magn Reson Imaging, 2022, 13(9): 58-62. DOI:10.12015/issn.1674-8034.2022.09.011.

Skalski MR, White EA, Patel DB, et al. The Traumatized TFCC: An Illustrated Review of the Anatomy and Injury Patterns of the Triangular Fibrocartilage Complex[J]. Curr Probl Diagn Radiol, 2016, 45(1): 39-50. DOI: 10.1067/j.cpradiol.2015.05.004.
Nakamura T, Yabe Y, Horiuchi Y. Functional anatomy of the triangular fibrocartilage complex[J]. J Hand Surg Br, 1996, 21(5): 581-586. DOI: 10.1016/s0266-7681(96)80135-5.
DaSilva MF, Goodman AD, Gil JA, et al. Evaluation of Ulnar-sided Wrist Pain[J/OL]. J Am Acad Orthop Surg, 2017, 25(8) [2022-9-10]. DOI: 10.5435/JAAOS-D-16-00407.
Iordache SD, Rowan R, Garvin GJ, et al. Prevalence of triangular fibrocartilage complex abnormalities on MRI scans of asymptomatic wrists[J]. J Hand Surg Am, 2012, 37(1): 98-103. DOI: 10.1016/j.jhsa.2011.10.006.
Dunn JC, Polmear MM, Nesti LJ. Surgical Repair of Acute TFCC Injury[J]. Hand (N Y), 2020, 15(5): 674-678. DOI: 10.1177/1558944719828007.
Al-Hiari AA. The role of wrist magnetic resonance arthrography in diagnosing triangular fibrocartilage complex tears: experience at king hussein medical center, jordan[J]. Sultan Qaboos Univ Med J, 2013, 13(2): 280-286. DOI: 10.12816/0003235.
Wang ZX, Liu B, Chen SL, et al. Value of conventional wrist physical examination in detection of injury to triangular fibrocartilage complex[J]. Chin J Orthop Trauma, 2019, 21(2): 133-137. DOI: 10.3760/cma.j.issn.1671-7600.2019.02.007.
Trehan SK, Schimizzi G, Shen TS, et al. Arthroscopic treatment of triangular fibrocartilage complex injuries in paediatric and adolescent patients[J]. J Hand Surg Eur Vol, 2019, 44(6): 587-588. DOI: 10.1177/1753193418825070.
Zhan HL, Li WT, Bai RJ, et al. High-resolution 3T Magnetic Resonance Imaging of the Triangular Fibrocartilage Complex in Chinese Wrists: Correlation with Cross-sectional Anatomy[J]. Chin Med J (Engl)2017, 130(7): 817-822. DOI: 10.4103/0366-6999.202746.
Liu L, Wang ZX, Chen SL, et al. Comparison of autopsy and magnetic resonance imaging of triangular fibrocartilage complex structure[J]. Natl Med J China, 2021(12): 836-840. DOI: 10.3760/cma.j.cn112137-20200706-02039.
Totterman SM, Miller RJ. Triangular fibrocartilage complex: normal appearance on coronal three-dimensional gradient-recalled-echo MR images[J]. Radiology, 1995, 195(2):521-7. DOI: 10.1148/radiology.195.2.7724777.
Treiser MD, Crawford K, Iorio ML. TFCC Injuries: Meta-Analysis and Comparison of Diagnostic Imaging Modalities[J]. J Wrist Surg, 2018, 7(3): 267-272. DOI: 10.1055/s-0038-1629911.
Bae WC, Ruangchaijatuporn T, Chang EY, et al. MR morphology of triangular fibrocartilage complex: correlation with quantitative MR and biomechanical properties[J]. Skeletal Radiol, 2016, 45(4): 447-454. DOI: 10.1007/s00256-015-2309-z.
Li J, Gan W, Liu WJ, et al. Early MRI imaging performance in patients with wrist instability and triangular fibrocartilage complex injury[J]. Imaging Research and Medical Applications, 2021, 5(12): 160-162. DOI: 10.3969/j.issn.2096-3807.2021.12.079.
Luetkens KS, Laas SF, Haßler S, et al. Contrast-enhanced MRI of the wrist: Intravenous application of gadolinium improves diagnosis in ulnar-sided injuries of the TFCC[J/OL]. Eur J Radiol, 2021, 143 [2022-9-5]. DOI: 10.1016/j.ejrad.2021.109901.
Ng WHA, Griffith JF, Ng ISH. How to Report: Wrist MRI. Semin Musculoskelet Radiol[J]. 2021, 25(5): 670-680. DOI: 10.1055/s-0041-1736313.
Andersson JK, Andernord D, Karlsson J, et al. Efficacy of Magnetic Resonance Imaging and Clinical Tests in Diagnostics of Wrist Ligament Injuries: A Systematic Review[J]. Arthroscopy, 2015, 31(10): 2014-2020. DOI: 10.1016/j.arthro.2015.04.090.
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
Shapiro LM, Yao J. Triangular Fibrocartilage Complex Repair/Reconstruction[J]. Hand Clin, 2021, 37(4): 493-505. DOI: 10.1016/j.hcl.2021.06.006.
Herzberg G, Burnier M, Nakamura T. Arthroscopic Anatomy of the TFCC with Relevance to Function and Pathology[J]. J Wrist Surg, 2021, 10(6): 558-564. DOI: 10.1055/s-0041-1732416.
van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational Radiomics System to Decode the Radiographic Phenotype[J/OL]. Cancer Res, 2017, 77(21) [2022-9-11]. DOI: 10.1158/0008-5472.CAN-17-0339.
Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
Wu TT, Chen YF, Hastie T, et al. Genome-wide association analysis by lasso penalized logistic regression[J]. Bioinformatics, 2009, 25(6): 714-721. DOI: 10.1093/bioinformatics/btp041.
Hepp T, Schmid M, Gefeller O, et al. Approaches to Regularized Regression-A Comparison between Gradient Boosting and the Lasso[J]. Methods Inf Med, 2016, 55(5): 422-430. DOI: 10.3414/me16-01-0033.
Xie J, Li L. Comments on the utilization of Mann-Whitney U test and Kaplan-Meier method[J/OL]. J Gynecol Oncol, 2021, 32(3) [2022-9-5]. DOI: 10.3802/jgo.2021.32.46.
Huang S, Cai N, Pacheco PP, et al. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics[J]. Cancer Genomics Proteomics, 2018, 15(1): 41-51. DOI: 10.21873/cgp.20063.
Li Z, Ji X. Magnetic Resonance Imaging Image Segmentation under Edge Detection Intelligent Algorithm in Diagnosis of Surgical Wrist Joint Injuries[J/OL]. Contrast Media Mol Imaging, 2021, 2021 [2022-9-10]. DOI: 10.1155/2021/6891120.
Lin KY, Li YT, Han JY, et al. Deep Learning to Detect Triangular Fibrocartilage Complex Injury in Wrist MRI: Retrospective Study with Internal and External Validation[J/OL]. J Pers Med, 2022, 12(7) [2022-9-10]. DOI: 10.3390/jpm12071029.
Schachinger F, Farr S. Arthroscopic Treatment Results of Triangular Fibrocartilage Complex Tears in Adolescents: A Systematic Review[J/OL]. J Clin Med, 2021, 10(11) [2022-9-10]. DOI: 10.3390/jcm10112363.
Park YC, Shin SC, Kang HJ, et al. Arthroscopic Foveal Repair of the Triangular Fibrocartilage Complex Improved the Clinical Outcomes in Patients With Persistent Symptomatic Distal Radio-Ulnar Joint Instability After Plate Fixation of Distal Radius Fractures: Minimum 2-Year Follow-Up[J]. Arthroscopy, 2022, 38(4): 1146-1153. DOI: 10.1016/j.arthro.2021.11.047.
Huflage H, Luetkens KS, Kunz AS, et al. Improved diagnostic accuracy for ulnar-sided TFCC lesions with radial reformation of 3D sequences in wrist MR arthrography[J]. Eur Radiol, 2021, 31(12): 9399-9407. DOI: 10.1007/s00330-021-08024-3.
Rehwald C, Joyce RP, Pezeshk P, et al. 3T Magnetic Resonance Imaging of the Wrist Tendons[J]. Top Magn Reson Imaging, 2020, 29(5): 221-235. DOI: 10.1097/RMR.0000000000000255.
Leake RL, Mills MK, Allen H, et al. MRI of the Wrist Ligaments[J]. Top Magn Reson Imaging, 2020, 29(5): 209-220. DOI: 10.1097/RMR.0000000000000251.
Xu Y, He L, Han Y, et al. Evaluation of 3-Dimensional Magnetic Resonance Imaging (3D MRI) in Diagnosing Anterior Talofibular Ligament Injury[J/OL]. Med Sci Monit, 2021, 27 [2022-9-10]. DOI: 10.12659/MSM.927920.
Rogers W, Thulasi Seetha S, Refaee TAG, et al. Radiomics: from qualitative to quantitative imaging[J/OL]. Br J Radiol, 2020, 93(1108) [2022-9-10]. DOI: 10.1259/bjr.20190948.
Zhan H, Bai R, Qian Z, et al. Traumatic injury of the triangular fibrocartilage complex (TFCC)-a refinement to the Palmer classification by using high-resolution 3-T MRI[J]. Skeletal Radiol, 2020, 49(10): 1567-1579. DOI: 10.1007/s00256-020-03438-4.
Rhee PC, Sauvé PS, Lindau T, et al. Examination of the wrist: ulnar-sided wrist pain due to ligamentous injury[J]. J Hand Surg Am, 2014, 39(9): 1859-1862. DOI: 10.1016/j.jhsa.2014.07.004.
Roh YH, Kim S, Gong HS, et al. Prevalence and clinical characteristics of radiographic central triangular fibrocartilage complex tears in symptomatic and asymptomatic individuals younger than 50 years[J]. Arch Orthop Trauma Surg, 2018, 138(8): 1173-1178. DOI: 10.1007/s00402-018-2969-y.
Langerhuizen DWG, Janssen SJ, Mallee WH, et al. What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review[J]. Clin Orthop Relat Res, 2019, 477(11): 2482-2491. DOI: 10.1097/CORR.0000000000000848.
Tandon YK, Bartholmai BJ, Koo CW. Putting artificial intelligence (AI) on the spot: machine learning evaluation of pulmonary nodules[J]. J Thorac Dis, 2020, 12(11): 6954-6965. DOI: 10.21037/jtd-2019-cptn-03.

PREV Magnetic resonance image compilation in the assessment of chronic supraspinatus tendinitis
NEXT Quantitative assessment of bone marrow fat fraction of proximal femur in healthy subjects based on MRI mDIXON‐Quant technique

Tel & Fax: +8610-67113815    E-mail: