Share:
Share this content in WeChat
X
Clinical Article
Magnetic resonance image compilation in the assessment of chronic supraspinatus tendinitis
NI Yabo  TIAN Zhaorong  YANG Jianping  SUN Jie  WANG Zhijun 

Cite this article as: Ni YB, Tian ZR, Yang JP, et al. Magnetic resonance image compilation in the assessment of chronic supraspinatus tendinitis[J]. Chin J Magn Reson Imaging, 2022, 13(9): 53-57, 68. DOI:10.12015/issn.1674-8034.2022.09.010.


[Abstract] Objective To investigate the diagnostic value of quantitative parameters of magnetic resonance image compilation (Magic) sequence on chronic supraspinatus tendinitis.Materials and Methods Forty-two patients with clinical suspicion of supraspinatus tendinitis (tendinitis group) and 28 healthy volunteers (control group) were prospectively collected. Conventional anatomical imaging sequences T2WI fat saturation (FS) sequence and T1WI FS sequence in axial view, T1W FS sequence in oblique coronal view, proton density weighted (PDW) sequence in oblique sagittal view and Magic sequence in oblique coronal view were performed with SIGNATM Architect 3.0 T scanner. The supraspinatus tendon was divided into lateral, medial and middle subregions according to its shape in oblique coronal T2WI images view on Magic sequence. Two radiologists with 10 years of experience in musculoskeletal system diagnosis measured the T1, T2 and proton density (PD) values of the supraspinatus tendon on the Magic oblique coronal images, interclass correlation coefficient (ICC) were used to compared the consistency between and within observers. One-way analysis of variance or Kruskal-Wallis H test were used to compare the differences of quantitative parameters in different regions. Receiver operating characteristic (ROC) curves were drawn for parameters with statistically significant differences to evaluate the diagnostic efficacy for tendinitis.Results The T1 and T2 value in the lateral subregion, T2 value in the middle subregion of the tendinitis group were higher than those in the control group, and the difference was statistically significant (P<0.05). The PD values in lateral subregion, T1 values and PD values in the middle subregion had no significant difference between the two groups (P>0.05). The T1, T2 and PD value in the medial subregion had no significant difference between the two groups (P>0.05). The AUC of T1 value in the lateral subregion for the diagnosis of supraspinatus tendinitis was 0.821, sensitivity and specificity were 90.5% and 67.9%. The AUC of T2 value in the lateral subregion was 0.733, sensitivity and specificity were 66.7% and 78.6%. The AUC of T2 value in the middle subregion was 0.682, sensitivity and specificity were 61.9% and 75.0%. The above three values had high diagnostic efficacy for supraspinatus tendinitis.Conclusions The T1 and T2 values of Magic sequence are effective quantitative parameters reflecting chronic supraspinatus tendinitis, which can provide quantitative objective basis of supraspinatus tendinitis.
[Keywords] quantitative magnetic resonance imaging;supraspinatus tendinitis;rotator cuff injury;synthetic magnetic resonance imaging

NI Yabo1, 2   TIAN Zhaorong2   YANG Jianping1, 2   SUN Jie1, 2   WANG Zhijun2*  

1 Ningxia Medical University, Yinchuan 750001, China

2 Department of Radiology, Ningxia Medical University General Hospital, Yinchuan 750001, China

*Wang ZJ, E-mail: wangzhijun2056@163.com

Conflicts of interest   None.

Received  2022-06-01
Accepted  2022-09-08
DOI: 10.12015/issn.1674-8034.2022.09.010
Cite this article as: Ni YB, Tian ZR, Yang JP, et al. Magnetic resonance image compilation in the assessment of chronic supraspinatus tendinitis[J]. Chin J Magn Reson Imaging, 2022, 13(9): 53-57, 68.DOI:10.12015/issn.1674-8034.2022.09.010

[1]
He X, Luo XB, Li SB, et al. Research on the clinical effect of combination treatment of extracorporeal shock wave therapy and shoulder joint function training on the supraspinatus tendinitis[J]. Chin J Shoulder Elb Electron Ed, 2017, 5(1): 9-14. DOI: 10.3877/cma.j.issn.2095-5790.2017.01.003.
[2]
Millar NL, Silbernagel KG, Thorborg K, et al. Tendinopathy[J/OL]. Nat Rev Dis Primers, 2021, 7(1) [2022-09-08]. https://www.nature.com/articles/s41572-020-00234-1.fulltext. DOI: 10.1038/s41572-020-00234-1.
[3]
Hsu JC, Chen PH, Huang KC, et al. Efficiency of quantitative echogenicity for investigating supraspinatus tendinopathy by the gray-level histogram of two ultrasound devices[J]. J Med Ultrason (2001), 2017, 44(4): 297-303. DOI: 10.1007/s10396-017-0777-6.
[4]
Hashimoto T, Nobuhara K, Hamada T. Pathologic evidence of degeneration as a primary cause of rotator cuff tear[J]. Clin Orthop Relat Res, 2003(415): 111-120. DOI: 10.1097/01.blo.0000092974.12414.22.
[5]
Tanenbaum LN, Tsiouris AJ, Johnson AN, et al. Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1103-1110. DOI: 10.3174/ajnr.A5227.
[6]
Hagiwara A, Hori M, Yokoyama K, et al. Synthetic MRI in the detection of multiple sclerosis plaques[J]. AJNR Am J Neuroradiol, 2017, 38(2): 257-263. DOI: 10.3174/ajnr.A5012.
[7]
Cui YD, Li CM, Han SY, et al. The diagnostic value of synthetic MRI quantitative parameters for prostate cancer[J]. Chin J Radiol, 2021, 55(9): 975-980. DOI: 10.3760/cma.j.cn112149-20200721-00935.
[8]
Lee C, Choi YJ, Jeon KJ, et al. Synthetic magnetic resonance imaging for quantitative parameter evaluation of temporomandibular joint disorders[J/OL]. Dentomaxillofac Radiol, 2021, 50(5) [2022-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231687/.pdf. DOI: 10.1259/dmfr.20200584.
[9]
Jiang Y, Yu L, Luo X, et al. Quantitative synthetic MRI for evaluation of the lumbar intervertebral disk degeneration in patients with chronic low back pain[J/OL]. European Journal of Radiology, 2020, 124 [2022-09-08]. https://www.sciencedirect.com/science/article/abs/pii/S0720048X20300474?via%3Dihub.pdf. DOI: 10.1016/j.ejrad.2020.108858.
[10]
Zhan YY, Jiang YP, Zhang K, et al. Feasibility study on application of MAGiC sequence in sacroiliac joint of young volunteers[J]. Chin J Magn Reson Imaging, 2020, 11(7): 568-572. DOI: 10.12015/issn.1674-8034.2020.07.018.
[11]
Jiang YP, Li WJ, Zhan YY, et al. The value of MAGiC short T 1 inversion recovery sequence in the detection of bone marrow edema in sacroiliitis[J]. Chin J Radiol, 2021, 55(1): 59-63. DOI: 10.3760/cma.j.cn112149-20200313-00386.
[12]
Lipman K, Wang CC, Ting K, et al. Tendinopathy: injury, repair, and current exploration[J]. Drug Des Devel Ther, 2018, 12: 591-603. DOI: 10.2147/DDDT.S154660.
[13]
Trudel G, Duchesne-Bélanger S, Thomas J, et al. Quantitative analysis of repaired rabbit supraspinatus tendons (± channeling) using magnetic resonance imaging at 7 Tesla[J]. Quant Imaging Med Surg, 2021, 11(8): 3460-3471. DOI: 10.21037/qims-20-1343.
[14]
Vasishta A, Kelkar A, Joshi P, et al. The value of sonoelastography in the diagnosis of supraspinatus tendinopathy-a comparison study[J/OL]. Br J Radiol, 2019, 92(1095) [2022-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886288/.pdf. DOI: 10.1259/bjr.20180951.
[15]
Jain NB, Collins J, Newman JS, et al. Reliability of magnetic resonance imaging assessment of rotator cuff: the ROW study[J]. PM R, 2015, 7(3): 245-254. DOI: 10.1016/j.pmrj.2014.08.949.
[16]
Sein ML, Walton J, Linklater J, et al. Reliability of MRI assessment of supraspinatus tendinopathy[J/OL]. British Journal of Sports Medicine, 2007, 41(8) [2022-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2465433/.pdf. DOI: 10.1136/bjsm.2006.034421.
[17]
Anz AW, Lucas EP, Fitzcharles EK, et al. MRI T2 mapping of the asymptomatic supraspinatus tendon by age and imaging plane using clinically relevant subregions[J]. Eur J Radiol, 2014, 83(5): 801-805. DOI: 10.1016/j.ejrad.2014.02.002.
[18]
Ganal E, Ho CP, Wilson KJ, et al. Quantitative MRI characterization of arthroscopically verified supraspinatus pathology: comparison of tendon tears, tendinosis and asymptomatic supraspinatus tendons with T2 mapping[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(7): 2216-2224. DOI: 10.1007/s00167-015-3547-2.
[19]
Ahmad RG. Shoulder impingement: various risk factors for supraspinatus tendon tear[J/OL]. Medicine, 2022, 101(3) [2022-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772690/.pdf. DOI: 10.1097/MD.0000000000028575.
[20]
Du J, Chiang AJ, Chung CB, et al. Orientational analysis of the Achilles tendon and enthesis using an ultrashort echo time spectroscopic imaging sequence[J]. Magn Reson Imaging, 2010, 28(2): 178-184. DOI: 10.1016/j.mri.2009.06.002.
[21]
Fullerton GD, Rahal A. Collagen structure: the molecular source of the tendon magic angle effect[J]. J Magn Reson Imaging, 2007, 25(2): 345-361. DOI: 10.1002/jmri.20808.
[22]
Cao XY, Wei JG, Chen K, et al. A comparative study of UTE and T2* mapping imaging technology in quantitative assessment of rotator cuff tear[J]. Chin J Magn Reson Imaging, 2021, 12(12): 84-88. DOI: 10.12015/issn.1674-8034.2021.12.017.
[23]
Bhuva AN, Treibel TA, Fontana M, et al. T1 mapping: non-invasive evaluation of myocardial tissue composition by cardiovascular magnetic resonance[J]. Expert Rev Cardiovasc Ther, 2014, 12(12): 1455-1464. DOI: 10.1586/14779072.2014.986098.
[24]
Tbini Z, Mars M, Bouaziz M. T1 relaxation time of Achilles tendon at 3 tesla with special reference to relevant clinical score: a preliminary study[J]. Curr Med Imaging Rev, 2020, 16(2): 164-173. DOI: 10.2174/1573405615666181205130816.
[25]
Wright P, Jellus V, McGonagle D, et al. Comparison of two ultrashort echo time sequences for the quantification of T1 within phantom and human Achilles tendon at 3 T[J]. Magn Reson Med, 2012, 68(4): 1279-1284. DOI: 10.1002/mrm.24130.
[26]
Taylor AJ, Salerno M, Dharmakumar R, et al. T1 mapping: basic techniques and clinical applications[J]. JACC Cardiovasc Imaging, 2016, 9(1): 67-81. DOI: 10.1016/j.jcmg.2015.11.005.
[27]
Liu L, Yin B, Geng DY, et al. Changes of T2 relaxation time from neoadjuvant hemotherapy in breast cancer lesions[J/OL]. Iran J Radiol, 2016, 13(3) [2022-01-20]. https://brieflands.com/articles/iranjradiol-18060.html. DOI: 10.5812/iranjradiol.24014.
[28]
Xu J, Zhao SH, Lu MJ. Research advances in imaging techniques and clinical applications of myocardial T2 mapping[J]. Chin J Radiol, 2020(11): 1132-1136.
[29]
Chaland B, Mariette F, Marchal P, et al. 1H nuclear magnetic resonance relaxometric characterization of fat and water states in soft and hard cheese[J]. J Dairy Res, 2000, 67(4): 609-618. DOI: 10.1017/s0022029900004398.
[30]
Miller RM, Thunes J, Maiti S, et al. Effects of tendon degeneration on predictions of supraspinatus tear propagation[J]. Ann Biomed Eng, 2019, 47(1): 154-161. DOI: 10.1007/s10439-018-02132-w.
[31]
Neer CS. Impingement lesions[J]. Clin Orthop Relat Res, 1983(173): 70-77.
[32]
Jung Y, Gho S, Back SN, et al. The feasibility of synthetic MRI in breast cancer patients: comparison of T2 relaxation time with multiecho spin echo T2 mapping method[J/OL]. British journal of radiology, 2018 [2022-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435064/.pdf. DOI: 10.1259/bjr.20180479.
[33]
Lorio S, Tierney TM, McDowell A, et al. Flexible proton density (PD) mapping using multi-contrast variable flip angle (VFA) data[J]. Neuroimage, 2019, 186: 464-475. DOI: 10.1016/j.neuroimage.2018.11.023.

PREV Value of amide proton transfer imaging and intravoxel incoherent motion imaging in estimating histologic grades of endometrial adenocarcinoma
NEXT Identification of triangular fibrocartilage complex injury based on MRI radiomics model
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn