Share:
Share this content in WeChat
X
Clinical Article
Value of amide proton transfer imaging and intravoxel incoherent motion imaging in estimating histologic grades of endometrial adenocarcinoma
KONG Yaqing  QU Qianqian  MING Lei  WANG Zhe  DENG Kai 

Cite this article as: Kong YQ, Qu QQ, Ming L, et al. Value of amide proton transfer imaging and intravoxel incoherent motion imaging in estimating histologic grades of endometrial adenocarcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(9): 46-52. DOI:10.12015/issn.1674-8034.2022.09.009.


[Abstract] Objective To investigate the effect of amide proton transfer (APT) imaging and intravoxel incoherent motion (IVIM) imaging in estimating histologic grades of endometrial adenocarcinoma (EA).Materials and Methods A total of 39 patients with pathologically confirmation of EA underwent pelvic magnetic resonance imaging (grade Ⅰ, n=16; grade Ⅱ, n=14; grade Ⅲ, n=9), including APT and IVIM sequences. APT values and IVIM-derived parameters (f, D, D*) of lesions were calculated respectively by two radiologists. We used a Shapiro-Wilk test to evaluate whether the APT values and IVIM-derived parameters were normally distributed. The intraclass correlation coefficient (ICC) was calculated to describe the correlations of the measurements of each parameter between two readers. The differences of APT values and IVIM-derived parameters were calculated and compared among three grades. Then the receiver operating characteristic (ROC) curves and DeLong test were used to evaluate the efficiency of the parameters with statistically differences. Spearman's correlation analysis was also used between APT values and histologic grades, between IVIM-derived parameters and histologic grades, and between APT values and IVIM-derived parameters.Results All parameters in our research were normally distributed. The ICC of APT values and IVIM-derived parameters between the two readers showed excellent interobserver agreements (APT: 0.955; f: 0.958; D: 0.964; D*: 0.825). The APT values for grade Ⅱ and grade Ⅲ (3.17%±0.43%, 3.45%±0.42%) were significantly higher than grade Ⅰ (2.66%±0.63%), with statistically significant differences (P=0.012, P=0.001). The f values for grade Ⅱ and grade Ⅲ (0.170%±0.049%, 0.150%±0.011%) were significantly lower than grade Ⅰ (0.220%±0.080%), with statistically significant differences (P=0.027, P=0.010). The ROC analysis showed the AUC (area under the curve) of the APT values, f values and the combined diagnosis of both were as follows: grade Ⅰ vs. grade Ⅱ: 0.78, 0.70, 0.83; grade Ⅰ vs. grade Ⅲ: 0.86, 0.81, 0.92. There were no significant differences in AUC comparison among APT values, f values and combined diagnosis of both. APT values showed a positive correlation with histologic grades (rs=0.578, P<0.001) while f values showed a negative correlation (rs=-0.416, P=0.008).Conclusions APT values and f values were correlated with the histologic grades of EA, and there was no significant difference of APT values and f values in differentiating the histologic grades of EA. APT and IVIM imaging may be helpful to predict histologic grades of EA.
[Keywords] amide proton transfer imaging;intravoxel incoherent motion imaging;endometrial adenocarcinoma;histologic grades;functional magnetic resonance imaging

KONG Yaqing1, 2   QU Qianqian1   MING Lei1   WANG Zhe1   DENG Kai1*  

1 Department of Radiology, the First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qian Foshan Hospital), Jinan 250014, China

2 Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 271016, China

*Deng K, E-mail: 289954749@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Shandong Provincial Science and Technology Development Foundation (No. 2012YD18060).
Received  2022-05-19
Accepted  2022-08-30
DOI: 10.12015/issn.1674-8034.2022.09.009
Cite this article as: Kong YQ, Qu QQ, Ming L, et al. Value of amide proton transfer imaging and intravoxel incoherent motion imaging in estimating histologic grades of endometrial adenocarcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(9): 46-52. DOI:10.12015/issn.1674-8034.2022.09.009.

[1]
Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium[J]. Int J Gynaecol Obstet, 2009, 105(2): 103-104. DOI: 10.1016/j.ijgo.2009.02.012.
[2]
Lu KH, Broaddus RR. Endometrial Cancer[J]. N Engl J Med, 2020, 383(21): 2053-2064. DOI: 10.1056/NEJMra1514010.
[3]
Wang HY, Xue CJ. Guidance value of preoperative MRI scan on abdominopelvic cavity in the diagnosis and treatment of EC[J]. China Med Equip, 2019, 16(9): 79-82. DOI: 10.3969/J.ISSN.1672-8270.2019.09.021.
[4]
Zhou JY, Payen JF, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[5]
Canese R. Editorial for "comparative analysis of amide proton transfer MRI and diffusion-weighted imaging in assessing p53 and ki-67 expression of rectal adenocarcinoma"[J]. J Magn Reson Imaging, 2020, 52(5): 1497-1498. DOI: 10.1002/jmri.27265.
[6]
Lecler A, Duron L, Zmuda M, et al. Intravoxel incoherent motion (IVIM) 3 T MRI for orbital lesion characterization[J]. Eur Radiol, 2021, 31(1): 14-23. DOI: 10.1007/s00330-020-07103-1.
[7]
Ochiai R, Mukuda N, Yunaga H, et al. Amide proton transfer imaging in differentiation of type Ⅱ and type I endometrial carcinoma: a pilot study[J]. Jpn J Radiol, 2022, 40(2): 184-191. DOI: 10.1007/s11604-021-01197-3.
[8]
Meng N, Fang T, Feng PY, et al. Amide proton transfer-weighted imaging and multiple models diffusion-weighted imaging facilitates preoperative risk stratification of early-stage endometrial carcinoma[J]. J Magn Reson Imaging, 2021, 54(4): 1200-1211. DOI: 10.1002/jmri.27684.
[9]
Li Y, Lin CY, Qi YF, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: correlation with Ki-67 proliferation status[J]. Magn Reson Imaging, 2021, 78: 18-24. DOI: 10.1016/j.mri.2021.02.006.
[10]
Li Y, Lin CY, Qi YF, et al. Non-invasive differentiation of endometrial adenocarcinoma from benign lesions in the uterus by utilization of amide proton transfer-weighted MRI[J]. Mol Imaging Biol, 2021, 23(3): 446-455. DOI: 10.1007/s11307-020-01565-x.
[11]
Meng N, Wang XJ, Sun J, et al. Evaluation of amide proton transfer-weighted imaging for endometrial carcinoma histological features: a comparative study with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(11): 8388-8398. DOI: 10.1007/s00330-021-07966-y.
[12]
Nishie A, Takayama Y, Asayama Y, et al. Amide proton transfer imaging can predict tumor grade in rectal cancer[J]. Magn Reson Imaging, 2018, 51: 96-103. DOI: 10.1016/j.mri.2018.04.017.
[13]
Dobrzycka B, Mackowiak-Matejczyk B, Kinalski M, et al. Pretreatment serum levels of bFGF and VEGF and its clinical significance in endometrial carcinoma[J]. Gynecol Oncol, 2013, 128(3): 454-460. DOI: 10.1016/j.ygyno.2012.11.035.
[14]
Smith SK. Regulation of angiogenesis in the endometrium[J]. Trends Endocrinol Metab, 2001, 12(4): 147-151. DOI: 10.1016/s1043-2760(01)00379-4.
[15]
Kamat AA, Merritt WM, Coffey D, et al. Clinical and biological significance of vascular endothelial growth factor in endometrial cancer[J]. Clin Cancer Res, 2007, 13(24): 7487-7495. DOI: 10.1158/1078-0432.CCR-07-1017.
[16]
Tang Y, Dundamadappa SK, Thangasamy S, et al. Correlation of apparent diffusion coefficient with Ki-67 proliferation index in grading meningioma[J]. AJR Am J Roentgenol, 2014, 202(6): 1303-1308. DOI: 10.2214/AJR.13.11637.
[17]
Suzuki A, Maeda T, Baba Y, et al. Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model[J]. Cancer Cell Int, 2014, 14(1): 129. DOI: 10.1186/s12935-014-0129-1.
[18]
Meng N, Wang X, Sun J, et al. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer[J]. Eur Radiol, 2020, 30(10): 5758-5767. DOI: 10.1007/s00330-020-06884-9.
[19]
Fujii S, Kido A, Baba T, et al. Subendometrial enhancement and peritumoral enhancement for assessing endometrial cancer on dynamic contrast enhanced MR imaging[J]. Eur J Radiol, 2015, 84(4): 581-589. DOI: 10.1016/j.ejrad.2015.01.004.
[20]
Iima M, Reynaud O, Tsurugizawa T, et al. Characterization of glioma microcirculation and tissue features using intravoxel incoherent motion magnetic resonance imaging in a rat brain model[J]. Invest Radiol, 2014, 49(7): 485-490. DOI: 10.1097/RLI.0000000000000040.
[21]
Li XS, Wang P, Li DC, et al. Intravoxel incoherent motion MR imaging of early cervical carcinoma: correlation between imaging parameters and tumor-stroma ratio[J]. Eur Radiol, 2018, 28(5): 1875-1883. DOI: 10.1007/s00330-017-5183-3.
[22]
Williams E, Martin S, Moss R, et al. Co-expression of VEGF and CA9 in ovarian high-grade serous carcinoma and relationship to survival[J]. Virchows Arch, 2012, 461(1): 33-39. DOI: 10.1007/s00428-012-1252-9.
[23]
Shen NX, Zhao LY, Jiang JJ, et al. Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion[J]. J Magn Reson Imaging, 2016, 44(3): 620-632. DOI: 10.1002/jmri.25191.
[24]
Bai Y, Lin YS, Tian J, et al. Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging[J]. Radiology, 2016, 278(2): 496-504. DOI: 10.1148/radiol.2015142173.
[25]
Zhang Q, Yu XD, Lin M, et al. Multi-b-value diffusion weighted imaging for preoperative evaluation of risk stratification in early-stage endometrial cancer[J]. Eur J Radiol, 2019, 119: 108637. DOI: 10.1016/j.ejrad.2019.08.006.
[26]
Zhang JJ, Suo ST, Liu GQ, et al. Comparison of monoexponential, biexponential, stretched-exponential, and kurtosis models of diffusion-weighted imaging in differentiation of renal solid masses[J]. Korean J Radiol, 2019, 20(5): 791-800. DOI: 10.3348/kjr.2018.0474.
[27]
Yamada I, Sakamoto J, Kobayashi D, et al. Diffusion kurtosis imaging of endometrial carcinoma: correlation with histopathological findings[J]. Magn Reson Imaging, 2019, 57: 337-346. DOI: 10.1016/j.mri.2018.12.009.
[28]
Whittaker CS, Coady A, Culver L, et al. Diffusion-weighted MR imaging of female pelvic tumors: a pictorial review[J]. Radiographics, 2009, 29(3): 759-774. DOI: 10.1148/rg.293085130.
[29]
Federau C, Hagmann P, Maeder P, et al. Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle[J/OL]. PLoS One, 2013, 8(8) [2022-05-19]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072856. DOI: 10.1371/journal.pone.0072856.
[30]
Hao GY, Chen M, Wang CJ, et al. The value of intravoxel incoherent motion and diffusion kurtosis imaging in clinical stage and pathological grade of cervical squamous cell carcinoma[J]. J Pract Radiol, 2022, 38(1): 99-103. DOI: 10.3969/j.issn.1002-1671.2022.01.024.
[31]
Marzi S, Piludu F, Vidiri A. Assessment of diffusion parameters by intravoxel incoherent motion MRI in head and neck squamous cell carcinoma[J]. NMR Biomed, 2013, 26(12): 1806-1814. DOI: 10.1002/nbm.3020.

PREV The investigation of association between radiologic extranodal extension and pathological grades of prostate cancer
NEXT Magnetic resonance image compilation in the assessment of chronic supraspinatus tendinitis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn