Share this content in WeChat
Clinical Article
Meta-analysis of local spontaneous brain activity changes in acute and subacute mild traumatic brain injury
YUAN Wenhuan  LUO Lin  WANG Yunlin  JIN Tao  YU Dahua 

Cite this article as: Yuan WH, Luo L, Wang YL, et al. Meta-analysis of local spontaneous brain activity changes in acute and subacute mild traumatic brain injury[J]. Chin J Magn Reson Imaging, 2022, 13(9): 13-17, 24. DOI:10.12015/issn.1674-8034.2022.09.003.

[Abstract] Objective To explore the most consistent vulnerable regions of mild traumatic brain injury (mTBI) studied by resting state functional magnetic resonance imaging (rs-fMRI), and to reveal the underlying neural mechanism of mTBI.Materials and Methods A search was performed for studies on mTBI resting state brain activation abnormalities by regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF) and fraction amplitude of low-frequency fluctuation (fALFF) before March 2022. The brain regions with abnormal local spontaneous brain activity in mTBI patients compared with healthy subjects in previous studies were summarized, and the signed differential mapping (SDM) software was used for data processing and analysis.Results A total of 11 studies (401 mTBI and 371 healthy controls) were included. Based on meta-analysis, it was confirmed that mTBI patients had significantly increased local spontaneous brain activity in right lingual gyrus, left middle occipital gyrus, right dorsolateral superior frontal gyrus and left central sulcus. Local spontaneous brain activity was decreased in the left anterior cingulate and paracingulate gyrus, right angular gyrus and left middle frontal gyrus (P<0.005, peak height Z>1, cluster extent≥20 voxels).Conclusions Meta-analysis was used to confirm the abnormal core brain regions in mTBI patients. These findings help delineate specific areas of interest and understand the neurobiological basis of mTBI.
[Keywords] mild traumatic brain injury;local spontaneous brain activity;meta-analysis;signed differential mapping;resting state functional magnetic resonance imaging

YUAN Wenhuan1   LUO Lin1*   WANG Yunlin1   JIN Tao1   YU Dahua2  

1 Department of Imaging, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, China

2 Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China

*Luo L, E-mail:

Conflicts of interest   None.

Received  2022-06-13
Accepted  2022-09-07
DOI: 10.12015/issn.1674-8034.2022.09.003
Cite this article as: Yuan WH, Luo L, Wang YL, et al. Meta-analysis of local spontaneous brain activity changes in acute and subacute mild traumatic brain injury[J]. Chin J Magn Reson Imaging, 2022, 13(9): 13-17, 24.DOI:10.12015/issn.1674-8034.2022.09.003

Diaz-Pacheco V, Vargas-Medrano J, Tran E, et al.Prognosis and Diagnostic Biomarkers of Mild Traumatic Brain Injury: Current Status and Future Prospects[J]. J Alzheimers Dis, 2022, 86(3): 943-959. DOI: 10.3233/JAD-215158.
Dwyer B, Katz DI. Postconcussion syndrome[J]. Handb Clin Neurol, 2018, 158: 163-178. DOI: 10.1016/B978-0-444-63954-7.00017-3.
Huang WJ, Fan FX, Zhang PF, et al. Progresses of structural and functional MRI in predicting post-concussion syndrome[J]. Chin J Magn Reson Imaging, 2021, 12(2): 94-97. DOI: 10.12015/issn.1674-8034.2021.02.023.
Lu L, Zhang J, Li F, et al. Aberrant Static and Dynamic Functional Network Connectivity in Acute Mild Traumatic Brain Injury with Cognitive Impairment[J]. Clin Neuroradiol, 2022, 32(1): 205-214. DOI: 10.1007/s00062-021-01082-6.
Liu HQ, Ba CH, Gao WX, et al. Research progress in brain functional changes in PTSD patients[J]. Chin J Magn Reson Imaging, 2022, 13(2): 120-122, 126. DOI: 10.12015/issn.1674-8034.2022.02.029.
Yang XH, Huang XY, Liu WX, et al. Homogeneity of cognitive function altered in patients with minimal hepatic encephalopathy: A fMRI based study[J]. Chin J Magn Reson Imaging, 2022, 13(5): 77-81, 88. DOI: 10.12015/issn.1674-8034.2022.05.014.
Salvia E, Tissier C, Charron S, et al. The local properties of bold signal fluctuations at rest monitor inhibitory control training in adolescents[J/OL]. Dev Cogn Neurosci, 2019, 38 [2022-06-12]. DOI: 10.1016/j.dcn.2019.100664.
Hu YX, Yu F, Zhang JQ, et al. Changes of resting-state brain functional activities in breast cancer patients after neoadjuvant chemotherapy: a short-term longitudinal study[J]. Chin J Magn Reson Imaging, 2022, 13(2): 31-36. DOI: 10.12015/issn.1674-8034.2022.02.007.
Luo X, Lin D, Xia S, et al.Machine Learning Classification of Mild Traumatic Brain Injury Using Whole-Brain Functional Activity: A Radiomics Analysis[J/OL]. Dis Markers, 2021 [2022-03-28]. DOI: 10.1155/2021/3015238.
Shi J, Teng J, Du X, et al. Multi-Modal Analysis of Resting-State fMRI Data in mTBI Patients and Association With Neuropsychological Outcomes[J/OL]. Front Neurol, 2021, 12 [2022-03-29]. DOI: 10.3389/fneur.2021.639760.
Zhan J, Gao L, Zhou F, et al. Amplitude of Low-Frequency Fluctuations in Multiple-Frequency Bands in Acute Mild Traumatic Brain Injury[J/OL]. Front Hum Neurosci, 2016, 10 [2022-03-29]. DOI: 10.3389/fnhum.2016.00027.
Wu H, Song Y, Chen S, et al. An Activation Likelihood Estimation Meta-Analysis of Specific Functional Alterations in Dorsal Attention Network in Mild Cognitive Impairment[J/OL]. Front Neurosci, 2022, 16 [2022-03-31]. DOI: 10.3389/fnins.2022.876568.
Zhang Q, Hou YZ, Zhang W, et al. Resting-state fMRI study of vulnerable brain regions in patients with primary insomnia: A Meta-analysis based on activation likelihood estimation[J]. Chin J Magn Reson Imaging, 2022, 13(6): 88-93. DOI: 10.12015/issn.1674-8034.2022.06017.
Wang Q, Li HY, Li YD, et al.Resting-state abnormalities in functional connectivity of the default mode network in autism spectrum disorder: a meta-analysis[J]. Brain Imaging Behav, 2021, 15(5): 2583-2592. DOI: 10.1007/s11682-021-00460-5.
Ma HJ, Zhang XY, SAUGAT POKHAREL, et al. A Meta analysis of quantitative evaluation of lumbar disc degeneration by diffusion weighted magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2020, 11(12): 1138-1142, 1155. DOI: 10.12015/issn.1674-8034.2020.12.012.
Gong J, Wang J, Qiu S, et al. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis[J/OL]. Transl Psychiatry, 2020, 10(1) [2022-03-28]. DOI: 10.1038/s41398-020-01036-5.
Zhan J, Gao L, Zhou F, et al. Decreased Regional Homogeneity in Patients With Acute Mild Traumatic Brain Injury: A Resting-State fMRI Study[J]. J Nerv Ment Dis, 2015, 203(10): 786-791. DOI: 10.1097/NMD.0000000000000368.
Meier TB, Giraldo-Chica M, España LY, et al. Resting-State fMRI Metrics in Acute Sport-Related Concussion and Their Association with Clinical Recovery: A Study from the NCAA-DOD CARE Consortium[J]. J Neurotrauma, 2020, 37(1): 152-162. DOI: 10.1089/neu.2019.6471.
Meier TB, Bellgowan PSF, Mayer AR. Longitudinal assessment of local and global functional connectivity following sports-related concussion[J]. Brain Imaging Behav, 2017, 11(1): 129-140. DOI: 10.1007/s11682-016-9520-y.
Hao ZL. Bold-functional magnetic resonance imaging study on acute mild brain injury[D]. Dalian: Dalian Medical University, 2014.
Kuang HM. Alteration of intrinsic activity in brain concussion patients:a resting-state functional MRI study[D]. NanChang: NanChang University, 2015.
Li FF, Lu LY, Hu LY, et al. Abnormal resting spontaneous brain activity and functional connectivity in patients with acute Mild Traumatic Brain Injury[J]. J Clin Radiol, 2020, 39(9): 1699-1703. DOI: 10.13437/j.cnki.jcr.2020.09.006.
Lu XQ. Study on rs-fMRI and diffusion kurtosis imaging in hyperacute phase of mild traumatic brain injury[D]. Hangzhou: Hangzhou Normal University, 2018.
Wang TY, Wei CX, Liu YK, et al. The Changes of ReHo of Local Brain Regions in Patients with Acute Mild Traumatic Brain Injury[J]. Chin Comput Med Imag, 2018, 24(2): 101-104. DOI: 10.19627/j.cnki.cn31-1700/th.2018.02.001.
Yi H. Resting-state functional MRI and Cognitive impairment study in mTBI patients in acute phase[D]. Changsha: Central South University, 2014.
Jackson GD, Makdissi M, Pedersen M, et al. Functional brain effects of acute concussion in Australian rules football players[J/OL]. Journal of Concussion, 2019 [2022-04-01]. DOI: 10.1177/2059700219861200.
Zhang J, Zhang HZ, Zhang HY, et al. Task-state fMRI activations in patients with mild traumatic brain injury: a meta-analysis[J]. Chin J Minim Invasive Neurosurg, 2021, 26(3): 105-109. DOI: 10.11850/j.issn.1009-122X.2021.03.003.
Zhu J, Ling J, Ding N. Association between Diffusion Tensor Imaging Findings and Cognitive Outcomes Following Mild Traumatic Brain Injury: A PRISMA-Compliant Meta-Analysis[J]. ACS Chem Neurosci, 2019, 10(12): 4864-4869. DOI: 10.1021/acschemneuro.9b00584.
Sepulcre J, Liu H, Talukdar T, et al. The organization of local and distant functional connectivity in the human brain[J/OL]. PLoS Comput Biol, 2010, 6(6) [2022-04-05]. DOI: 10.1371/journal.pcbi.1000808.
Zhang L, Yang KH, King AI. A proposed injury threshold for mild traumatic brain injury[J]. J Biomech Eng, 2004, 126(2): 226-236. DOI: 10.1115/1.1691446.
Qin H, Liu B, Yu DH. Changes of gray matter structure of patients with chronic insomnia in magnetic resonance imaging[J]. Chin J Neurol, 2021, 54(2): 125-130. DOI: 10.3760/cma.j.cnl13694-20200505-00328.
Teng C, Zhou J, Ma H, et al. Abnormal resting state activity of left middle occipital gyrus and its functional connectivity in female patients with major depressive disorder[J/OL]. BMC Psychiatry, 2018, 18(1) [2022-04-06]. DOI: 10.1186/s12888-018-1955-9.
Li F, Lu L, Shang S, et al. Cerebral Blood Flow and Its Connectivity Deficits in Mild Traumatic Brain Injury at the Acute Stage[J/OL]. Neural Plast, 2020 [2022-04-07]. DOI: 10.1155/2020/2174371.
Byrnes KR, Wilson CM, Brabazon F, et al. FDG-PET imaging in mild traumatic brain injury:a critical review[J/OL]. Front Neuroenergetics, 2014, 5 [2022-04-09]. DOI: 10.3389/fnene.2013.00013.
Jiang L, Xu T, He Y, et al. Toward neurobiological characterization of functional homogeneity in the human cortex: regional variation, morphological association and functional covariance network organization[J]. Brain Struct Funct, 2015, 220(5): 2485-2507. DOI: 10.1007/s00429-014-0795-8.

PREV Correlation between intracranial volume parameters and cognitive impairment in idiopathic normal pressure hydrocephalus
NEXT Value of multi-parameter diffusion weighted imaging in the differential diagnosis of benign and malignant TIC type Ⅱ breast lesions

Tel & Fax: +8610-67113815    E-mail: