Share this content in WeChat
Cardiac magnetic resonance imaging sequence of epicardial adipose tissue and research progress
MA Yan  WANG Jingxin  WANG Bin  LUO Song  CAI Jun 

Cite this article as: Ma Y, Wang JX, Wang B, et al. Cardiac magnetic resonance imaging sequence of epicardial adipose tissue and research progress[J]. Chin J Magn Reson Imaging, 2022, 13(8): 142-145. DOI:10.12015/issn.1674-8034.2022.08.032.

[Abstract] Epicardial adipose tissue (EAT) is located between the myocardium and visceral pericardium. EAT has characteristics of metabolism, calorihism, unique transcription, secretion profile and calcalability. It has been reported that EAT may be a potential therapeutic target for cardiovascular diseases. Imaging is the most important method to detect and evaluate EAT, among which cardiac magnetic resonance (CMR) has high spatial resolution, no radiation damage and good tissue contrast, and is currently considered as the main method for quantitative evaluation of EAT. In this review, we submitted the CMR imaging principle, sequences, measurement software and research progress of EAT.
[Keywords] epicardial adipose tissue;cardiac magnetic resonance imaging;left ventricular diastolic dysfunction

MA Yan   WANG Jingxin   WANG Bin   LUO Song   CAI Jun*  

Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China

Cai J, E-mail:

Conflicts of interest   None.

Received  2022-03-30
Accepted  2022-08-10
DOI: 10.12015/issn.1674-8034.2022.08.032
Cite this article as: Ma Y, Wang JX, Wang B, et al. Cardiac magnetic resonance imaging sequence of epicardial adipose tissue and research progress[J]. Chin J Magn Reson Imaging, 2022, 13(8): 142-145.DOI:10.12015/issn.1674-8034.2022.08.032

Shaihov-Teper O, Ram E, Ballan N, et al. Extracellular vesicles from epicardial fat facilitate atrial fibrillation[J]. Circulation, 2021, 143(25): 2475-2493. DOI: 10.1161/CIRCULATIONAHA.120.052009.
Iacobellis G. Epicardial adipose tissue in contemporary cardiology[J]. Nat Rev Cardiol, 2022: 1-14. DOI: 10.1038/s41569-022-00679-9.
Çinier G, Nalbantgil S. Epicardial fat: more than an adipose tissue[J]. Turk Kardiyol Dern Ars, 2021, 49(6): 427-429. DOI: 10.5543/tkda.2021.21189.
D'Marco L, Puchades MJ, Panizo N, et al. Cardiorenal fat: a cardiovascular risk factor with implications in chronic kidney disease[J/OL]. Front Med (Lausanne), 2021 [2022-3-30]. DOI: 10.3389/fmed.2021.640814.
Matos D, Ferreira AM, Freitas P, et al. The relationship between epicardial fat and atrial fibrillation cannot be fully explained by left atrial fibrosis[J]. Arq Bras Cardiol, 2022, 118(4): 737-742. DOI: 10.36660/abc.20201083.
Zhou Y, Yu M, Cui JG, et al. The predictive value of epicardial adipose tissue volume assessed by cardiac magnetic resonance for atrial fibrillation in patients with hypertrophic obstructive cardiomyopathy[J]. Int J Cardiovasc Imaging, 2021, 37(4): 1383-1393. DOI: 10.1007/s10554-020-02092-0.
Gandoy-Fieiras N, Gonzalez-Juanatey JR, Eiras S. Myocardium metabolism in physiological and pathophysiological states: implications of epicardial adipose tissue and potential therapeutic targets[J/OL]. Int J Mol Sci, 2020 [2022-3-30]. DOI: 10.3390/ijms21072641.
Tarsitano MG, Pandozzi C, Muscogiuri G, et al. Epicardial adipose tissue: a novel potential imaging marker of comorbidities caused by chronic inflammation[J]. Nutrients, 2022, 14(14): 2926. DOI: 10.3390/nu14142926.
van Woerden G, van Veldhuisen DJ, Gorter TM, et al. The value of echocardiographic measurement of epicardial adipose tissue in heart failure patients[J]. ESC Heart Fail, 2022, 9(2): 953-957. DOI: 10.1002/ehf2.13828.
Nagayama Y, Nakamura N, Itatani R, et al. Epicardial fat volume measured on nongated chest CT is a predictor of coronary artery disease[J]. Eur Radiol, 2019, 29(7): 3638-3646. DOI: 10.1007/s00330-019-06079-x.
Monti CB, Codari M, de Cecco CN, et al. Novel imaging biomarkers: epicardial adipose tissue evaluation[J/OL]. Br J Radiol, 2020 [2022-3-30]. DOI: 10.1259/bjr.20190770.
Ng ACT, Strudwick M, van der Geest RJ, et al. Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function[J/OL]. Circ Cardiovasc Imaging, 2018 [2022-3-30]. DOI: 10.1161/CIRCIMAGING.117.007372.
Henningsson M, Brundin M, Scheffel T, et al. Quantification of epicardial fat using 3D cine Dixon MRI[J]. BMC Med Imaging, 2020, 20(1): 80. DOI: 10.1186/s12880-020-00478-z.
Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez Cordero AJ, et al. Not only how much, but also how to, when measuring epicardial adipose tissue[J]. Magn Reson Imaging, 2022, 86: 149-151. DOI: 10.1016/j.mri.2021.11.004.
Okayama S, Ayako S, Somekawa S, et al. Feasibility of dual gradient-echo in-phase and opposed-phase magnetic resonance imaging for the evaluation of epicardial fat[J]. Acta Radiol, 2011, 52(7): 723-729. DOI: 10.1258/ar.2011.100454.
Bizino MB, Jazet IM, de Heer P, et al. Placebo-controlled randomised trial with liraglutide on magnetic resonance endpoints in individuals with type 2 diabetes: a pre-specified secondary study on ectopic fat accumulation[J]. Diabetologia, 2020, 63(1): 65-74. DOI: 10.1007/s00125-019-05021-6.
Haberka M, Machnik G, Kowalówka A, et al. Epicardial, paracardial, and perivascular fat quantity, gene expressions, and serum cytokines in patients with coronary artery disease and diabetes[J]. Pol Arch Intern Med, 2019, 129(11): 738-746. DOI: 10.20452/pamw.14961.
Leo LA, Paiocchi VL, Schlossbauer SA, et al. The intrusive nature of epicardial adipose tissue as revealed by cardiac magnetic resonance[J]. J Cardiovasc Echogr, 2019, 29(2): 45-51. DOI: 10.4103/jcecho.jcecho_22_19.
Skoda I, Henningsson M, Stenberg S, et al. Simultaneous assessment of left atrial fibrosis and epicardial adipose tissue using 3D late gadolinium enhanced Dixon MRI[J]. J Magn Reson Imaging, 2022 [2022-3-30]. DOI: 10.1002/jmri.28100.
Homsi R, Meier-Schroers M, Gieseke J, et al. 3D-Dixon MRI based volumetry of peri- and epicardial fat[J]. Int J Cardiovasc Imaging, 2016, 32(2): 291-299. DOI: 10.1007/s10554-015-0778-8.
Nezafat M, Nakamori S, Basha TA, et al. Imaging sequence for joint myocardial T 1 mapping and fat/water separation[J]. Magn Reson Med, 2019, 81(1): 486-494. DOI: 10.1002/mrm.27390.
Parisi V, Petraglia L, Formisano R, et al. Validation of the echocardiographic assessment of epicardial adipose tissue thickness at the Rindfleisch fold for the prediction of coronary artery disease[J]. Nutr Metab Cardiovasc Dis, 2020, 30(1): 99-105. DOI: 10.1016/j.numecd.2019.08.007.
Doesch C, Jochims J, Streitner F, et al. Novel prognostic markers derived from cardiovascular magnetic resonance imaging in patients with stable chronic coronary artery disease[J]. In Vivo, 2015, 29(6): 737-747.
Zhu L, Gu SJ, Wang QR, et al. Left ventricular myocardial deformation: a study on diastolic function in the Chinese male population and its relationship with fat distribution[J]. Quant Imaging Med Surg, 2020, 10(3): 634-645. DOI: 10.21037/qims.2020.01.16.
Bière L, Behaghel V, Mateus V, et al. Relation of quantity of subepicardial adipose tissue to infarct size in patients with ST-elevation myocardial infarction[J]. Am J Cardiol, 2017, 119(12): 1972-1978. DOI: 10.1016/j.amjcard.2017.03.024.
Homsi R, Kuetting D, Sprinkart A, et al. Interrelations of epicardial fat volume, left ventricular T1-relaxation times and myocardial strain in hypertensive patients: a cardiac magnetic resonance study[J]. J Thorac Imaging, 2017, 32(3): 169-175. DOI: 10.1097/RTI.0000000000000264.
Homsi R, Yuecel S, Schlesinger-Irsch U, et al. Epicardial fat, left ventricular strain, and T1-relaxation times in obese individuals with a normal ejection fraction[J]. Acta Radiol, 2019, 60(10): 1251-1257. DOI: 10.1177/0284185119826549.
Bard A, Raisi-Estabragh Z, Ardissino M, et al. Automated quality-controlled cardiovascular magnetic resonance pericardial fat quantification using a convolutional neural network in the UK biobank[J/OL]. Front Cardiovasc Med, 2021 [2022-3-30]. DOI: 10.3389/fcvm.2021.677574.
Daudé P, Ancel P, Confort Gouny S, et al. Deep-learning segmentation of epicardial adipose tissue using four-chamber cardiac magnetic resonance imaging[J]. Diagnostics (Basel), 2022, 12(1): 126. DOI: 10.3390/diagnostics12010126.
Salazar J, Luzardo E, Mejías JC, et al. Epicardial fat: physiological, pathological, and therapeutic implications[J/OL]. Cardiol Res Pract, 2016 [2022-3-30]. DOI: 10.1155/2016/1291537.
Weinreb JC, Rodby RA, Yee J, et al. Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American college of radiology and the national kidney foundation[J]. Kidney Med, 2020, 3(1): 142-150. DOI: 10.1016/j.xkme.2020.10.001.
Iantorno M, Soleimanifard S, Schär M, et al. Regional coronary endothelial dysfunction is related to the degree of local epicardial fat in people with HIV[J]. Atherosclerosis, 2018, 278: 7-14. DOI: 10.1016/j.atherosclerosis.2018.08.002.
Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15): 1413-1424. DOI: 10.1056/NEJMoa2022190.
Voors AA, Angermann CE, Teerlink JR, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial[J]. Nat Med, 2022, 28(3): 568-574. DOI: 10.1038/s41591-021-01659-1.
Mullens W, Martens P. Empagliflozin-induced changes in epicardial fat: the centerpiece for myocardial protection? [J]. JACC Heart Fail, 2021, 9(8): 590-593. DOI: 10.1016/j.jchf.2021.05.006.
van Eyk HJ, Paiman EHM, Bizino MB, et al. A double-blind, placebo-controlled, randomised trial to assess the effect of liraglutide on ectopic fat accumulation in South Asian type 2 diabetes patients[J]. Cardiovasc Diabetol, 2019, 18(1): 87. DOI: 10.1186/s12933-019-0890-5.
Tromp J, Bryant JA, Jin XY, et al. Epicardial fat in heart failure with reduced versus preserved ejection fraction[J]. Eur J Heart Fail, 2021, 23(5): 835-838. DOI: 10.1002/ejhf.2156.
Wu CK, Lee JK, Hsu JC, et al. Myocardial adipose deposition and the development of heart failure with preserved ejection fraction[J]. Eur J Heart Fail, 2020, 22(3): 445-454. DOI: 10.1002/ejhf.1617.
Vyas V, Hunter RJ, Longhi MP, et al. Inflammation and adiposity: new frontiers in atrial fibrillation[J]. Europace, 2020, 22(11): 1609-1618. DOI: 10.1093/europace/euaa214.
Mahajan R, Nelson A, Pathak RK, et al. Electroanatomical remodeling of the Atria in obesity: impact of adjacent epicardial fat[J]. JACC Clin Electrophysiol, 2018, 4(12): 1529-1540. DOI: 10.1016/j.jacep.2018.08.014.
Yang M, Bao WR, Xu ZH, et al. Association between epicardial adipose tissue and recurrence of atrial fibrillation after ablation: a propensity score-matched analysis[J/OL]. Int J Cardiovasc Imaging, 2022 [2022-3-30]. DOI: 10.1007/s10554-022-02557-4.
Sepehri Shamloo A, Schoene K, Stauber A, et al. Epicardial adipose tissue thickness as an independent predictor of ventricular tachycardia recurrence following ablation[J]. Heart Rhythm, 2019, 16(10): 1492-1498. DOI: 10.1016/j.hrthm.2019.06.009.
Lapinskas T, Pedrizzetti G, Stoiber L, et al. The intraventricular hemodynamic forces estimated using routine CMR cine images: a new marker of the failing heart[J]. JACC Cardiovasc Imaging, 2019, 12(2): 377-379. DOI: 10.1016/j.jcmg.2018.08.012.
Chen YF, Zhou YX, Liu PF. Study on the relationship between epicardial adipose tissue and left ventricular remodeling in hypertrophic cardiomyopathy based on T1 mapping technology[J]. Chin J Magn Reson Imaging, 2021, 12(6): 34-37. DOI: 10.12015/issn.1674-8034.2021.06.007.
Vyas V, Blythe H, Wood EG, et al. Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation[J/OL]. JCI Insight, 2021 [2022-3-30].
Chowdhary A, Thirunavukarasu S, Jex N, et al. Coronary microvascular function and visceral adiposity in patients with normal body weight and type 2 diabetes[J]. Obesity (Silver Spring), 2022, 30(5): 1079-1090. DOI: 10.1002/oby.23413.
Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data[J]. Lancet, 2018, 392(10151): 929-939. DOI: 10.1016/S0140-6736(18)31114-0.
Svanteson M, Holte KB, Haig Y, et al. Coronary plaque characteristics and epicardial fat tissue in long term survivors of type 1 diabetes identified by coronary computed tomography angiography[J]. Cardiovasc Diabetol, 2019, 18(1): 58. DOI: 10.1186/s12933-019-0861-x.
Rado SD, Lorbeer R, Gatidis S, et al. MRI-based assessment and characterization of epicardial and paracardial fat depots in the context of impaired glucose metabolism and subclinical left-ventricular alterations[J/OL]. Br J Radiol, 2019 [2022-3-30]. DOI: 10.1259/bjr.20180562.
Akbulut T, Şaylık F, Şengül C. The epicardial fat thickness is associated with fragmented QRS in patients with newly diagnosed metabolic syndrome[J]. Rev Assoc Med Bras (1992), 2022, 68(2): 250-255. DOI: 10.1590/1806-9282.20211065.
Cai SA, Wald R, Deva DP, et al. Cardiac MRI measurements of pericardial adipose tissue volumes in patients on in-centre nocturnal hemodialysis[J]. J Nephrol, 2020, 33(2): 355-363. DOI: 10.1007/s40620-019-00665-4.
Zhou H, An DA, Ni Z, et al. Magnetic resonance imaging quantification of accumulation of epicardial adipose tissue adds independent risks for diastolic dysfunction among dialysis patients[J/OL]. J Magn Reson Imaging, 2022 [2022-3-30]. DOI: 10.1002/jmri.28081.

PREV Progress of new MRI technology in parotid gland tumors
NEXT Correlation between MRI radiomics and neovascularization of breast cancer

Tel & Fax: +8610-67113815    E-mail: