Share:
Share this content in WeChat
X
Review
Application progress of myelin sheath probe in demyelinating diseases
LI Guodong  WENG Na  LI Xianglin  LIU Yan  WANG Xu 

Cite this article as: Li GD, Weng N, Li XL, et al. Application progress of myelin sheath probe in demyelinating diseases[J]. Chin J Magn Reson Imaging, 2022, 13(8): 135-138. DOI:10.12015/issn.1674-8034.2022.08.030.


[Abstract] The treatment of demyelinating diseases focuses on protecting myelin integrity and promoting myelin repair, and these efforts are inseparable from effective imaging tools and agents that link disease progression to the degree of myelin formation. In recent years, the development of myelin-specific probes has made it possible to directly and quantitatively monitor myelin content in vivo. The imaging technology of various marrow sheaths has become increasingly mature and greatly improved the specificity and sensitivity of monitoring myelin sheath. The complementary advantages of different myelin probes and imaging methods can provide more options for the detection and treatment of clinical demyelinating diseases in the future. This article reviews the progress of myelin probes used in optical imaging, nuclear medicine imaging, magnetic resonance imaging, and multimodal imaging in demyelinating diseases.
[Keywords] myelin probes;demyelination;multiple sclerosis;fluorescence imaging;positron emission tomography;magnetic resonance imaging

LI Guodong1   WENG Na1   LI Xianglin2   LIU Yan2   WANG Xu1*  

1 Department of Nuclear Medicine, Binzhou Medical University Hospital, Binzhou 256600, China

2 School of Medical Imaging, Binzhou Medical University, Yantai 264100, China

Wang X, E-mail: wangxu1978@163.com

Conflicts of interest   None.

Received  2022-03-04
Accepted  2022-08-10
DOI: 10.12015/issn.1674-8034.2022.08.030
Cite this article as: Li GD, Weng N, Li XL, et al. Application progress of myelin sheath probe in demyelinating diseases[J]. Chin J Magn Reson Imaging, 2022, 13(8): 135-138.DOI:10.12015/issn.1674-8034.2022.08.030

[1]
Stadelmann C, Timmler S, Barrantes-Freer A, et al. Myelin in the central nervous system: structure, function, and pathology[J]. Physiol Rev, 2019, 99(3): 1381-1431. DOI: 10.1152/physrev.00031.2018.
[2]
Sarbu N, Shih RY, Jones RV, et al. White matter diseases with radiologic-pathologic correlation[J]. Radiographics, 2016, 36(5): 1426-1447. DOI: 10.1148/rg.2016160031.
[3]
McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review[J]. JAMA, 2021, 325(8): 765-779. DOI: 10.1001/jama.2020.26858.
[4]
Wei WP, Ma DL, Li L, et al. Progress in the application of drugs for the treatment of multiple sclerosis[J/OL]. Front Pharmacol, 2021 [2022-03-04]. https://doi.org/10.3389/fphar.2021.724718. DOI: 10.3389/fphar.2021.724718.
[5]
Tian DC, Zhang CY, Yuan M, et al. Incidence of multiple sclerosis in China: a nationwide hospital-based study[J/OL]. Lancet Reg Health West Pac, 2020 [2022-03-04]. https://doi.org/10.1016/j.lanwpc.2020.100010. DOI: 10.1016/j.lanwpc.2020.100010.
[6]
Wang CX. Assessment and management of acute disseminated encephalomyelitis (ADEM) in the pediatric patient[J]. Paediatr Drugs, 2021, 23(3): 213-221. DOI: 10.1007/s40272-021-00441-7.
[7]
Jarius S, Paul F, Weinshenker BG, et al. Neuromyelitis optica[J/OL]. Nat Rev Dis Primers, 2020, 61(1) [2022-03-04]. https://www.nature.com/articles/s41572-020-0214-9. DOI: 10.1038/s41572-020-0214-9.
[8]
Tian DC, Li ZX, Yuan M, et al. Incidence of neuromyelitis optica spectrum disorder (NMOSD) in China: a national population-based study[J/OL]. Lancet Reg Heal West Pac, 2020 [2022-03-04]. https://doi.org/10.1016/j.lanwpc.2020.100021. DOI: 10.1016/j.lanwpc.2020.100021.
[9]
Thompson A, Ciccarelli O. Towards treating progressive multiple sclerosis[J]. Nat Rev Neurol, 2020, 16(11): 589-590. DOI: 10.1038/s41582-020-00421-4.
[10]
Fadda G, Armangue T, Hacohen Y, et al. Paediatric multiple sclerosis and antibody-associated demyelination: clinical, imaging, and biological considerations for diagnosis and care[J]. Lancet Neurol, 2021, 20(2): 136-149. DOI: 10.1016/S1474-4422(20)30432-4.
[11]
Lubetzki C, Zalc B, Williams A, et al. Remyelination in multiple sclerosis: from basic science to clinical translation[J]. Lancet Neurol, 2020, 19(8): 678-688. DOI: 10.1016/S1474-4422(20)30140-X.
[12]
Franklin RJM, Ffrench-Constant C. Regenerating CNS myelin - from mechanisms to experimental medicines[J]. Nat Rev Neurosci, 2017, 18(12): 753-769. DOI: 10.1038/nrn.2017.136.
[13]
Ben-Shalom I, Karni A, Kolb H. The role of molecular imaging as a marker of remyelination and repair in multiple sclerosis[J/OL]. Int J Mol Sci, 2021, 23(1) [2022-03-04]. https://www.mdpi.com/1422-0067/23/1/474. DOI: 10.3390/ijms23010474.
[14]
Wang C, Wu C, Popescu DC, et al. Longitudinal near-infrared imaging of myelination[J]. J Neurosci, 2011, 31(7): 2382-2390. DOI: 10.1523/jneurosci.2698-10.2011.
[15]
Schmitz K, Tegeder I. Bioluminescence and near-infrared imaging of optic neuritis and brain inflammation in the EAE model of multiple sclerosis in mice[J/OL]. J Vis Exp, 2017 [2022-03-04]. https://doi.org/10.3791/55321. DOI: 10.3791/55321.
[16]
Botz B, Bátai IZ, Kiss T, et al. The fluorescent dye 3, 3'-diethylthiatricarbocyanine iodide is unsuitable for in vivo imaging of myelination in the mouse[J]. Brain Res Bull, 2020, 156: 10-14. DOI: 10.1016/j.brainresbull.2019.12.009.
[17]
Qin W, Alifu N, Lam JWY, et al. Facile synthesis of efficient luminogens with AIE features for three-photon fluorescence imaging of the brain through the intact skull[J/OL]. Adv Mater, 2020 [2022-03-04]. https://doi.org/10.1002/adma.202000364. DOI: 10.1002/adma.202000364.
[18]
Wu MY, Wong AYH, Leung JK, et al. A near-infrared AIE fluorescent probe for myelin imaging: from sciatic nerve to the optically cleared brain tissue in 3D[J/OL]. Proc Natl Acad Sci USA, 2021 [2022-03-04]. https://doi.org/10.1073/pnas.2106143118. DOI: 10.1073/pnas.2106143118.
[19]
Faria D, Copray S, Buchpiguel C, et al. PET imaging in multiple sclerosis[J]. J Neuroimmune Pharmacol, 2014, 9(4): 468-482. DOI: 10.1007/s11481-014-9544-2.
[20]
Gao YN, Zhang M, Zhou QM, et al. Research progress of PET tracer for monitoring demyelinating diseases of central nervous system[J]. Chin J Contemp Neurol Neurosurg, 2021, 21(10): 899-904.
[21]
de PFD. Myelin positron emission tomography (PET) imaging in multiple sclerosis[J]. Neural Regen Res, 2020, 15(10): 1842-1843. DOI: 10.4103/1673-5374.280311.
[22]
Bauckneht M, Capitanio S, Raffa S, et al. Molecular imaging of multiple sclerosis: from the clinical demand to novel radiotracers[J/OL]. EJNMMI Radiopharm Chem, 2019, 4(1) [2022-03-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453990. DOI: 10.1186/s41181-019-0058-3.
[23]
van der Weijden CWJ, Meilof JF, van der Hoorn A, et al. Quantitative assessment of myelin density using [11C]MeDAS PET in patients with multiple sclerosis: a first-in-human study[J/OL]. Eur J Nucl Med Mol Imaging, 2022 [2022-07-26]. https://doi.org/10.1007/s00259-022-05770-4. DOI: 10.1007/s00259-022-05770-4.
[24]
Ikonomovic MD, Buckley CJ, Abrahamson EE, et al. Post-mortem analyses of PiB and flutemetamol in diffuse and cored amyloid-β plaques in Alzheimer's disease[J]. Acta Neuropathol, 2020, 140(4): 463-476. DOI: 10.1007/s00401-020-02175-1.
[25]
Auvity S, Tonietto M, Caillé F, et al. Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol, 11C-MeDAS, and 11C-PiB[J]. Eur J Nucl Med Mol Imaging, 2020, 47(2): 490-501. DOI: 10.1007/s00259-019-04516-z.
[26]
Wu CY, Eck B, Zhang S, et al. Discovery of 1, 2, 3-triazole derivatives for multimodality PET/CT/cryoimaging of myelination in the central nervous system[J]. J Med Chem, 2017, 60(3): 987-999. DOI: 10.1021/acs.jmedchem.6b01328.
[27]
Tiwari AD, Zhu JQ, You JQ, et al. Novel 18F-labeled radioligands for positron emission tomography imaging of myelination in the central nervous system[J]. J Med Chem, 2019, 62(10): 4902-4914. DOI: 10.1021/acs.jmedchem.8b01354.
[28]
Watanabe H, Sakai S, Iikuni S, et al. Synthesis and biological evaluation of radioiodinated 3-phenylcoumarin derivatives targeting myelin in multiple sclerosis[J/OL]. Bioorg Med Chem Lett, 2020 [2022-03-04]. https://doi.org/10.1016/j.bmcl.2020. DOI: 10.1016/j.bmcl.2020.127562.
[29]
Watanabe H, Maekawa R, Iikuni S, et al. Characterization of radioiodinated diaryl oxadiazole derivatives as SPECT probes for detection of myelin in multiple sclerosis[J]. ACS Chem Neurosci, 2022, 13(3): 363-369. DOI: 10.1021/acschemneuro.1c00753.
[30]
Wei W, Poirion E, Bodini B, et al. Predicting PET-derived myelin content from multisequence MRI for individual longitudinal analysis in multiple sclerosis[J]. NeuroImage, 2020 [2022-03-04]. https://doi.org/10.1016/j.neuroimage.2020.117308. DOI: 10.1016/j.neuroimage.2020.117308.
[31]
Bodini B, Tonietto M, Airas L, et al. Positron emission tomography in multiple sclerosis-straight to the target[J]. Nat Rev Neurol, 2021, 17(11): 663-675. DOI: 10.1038/s41582-021-00537-1.
[32]
van der Weijden CWJ, García DV, Borra RJH, et al. Myelin quantification with MRI: a systematic review of accuracy and reproducibility[J/OL]. NeuroImage, 2021 [2022-03-04]. https://doi.org/10.1016/j.neuroimage.2020.117561. DOI: 10.1016/j.neuroimage.2020.117561.
[33]
Cao JB, Cui LL, Sun WG, et al. Research progress of quantitative MRI radiomics in multiple sclerosis[J]. Chin J Magn Reson Imaging, 2021, 12(2): 113-116, 120. DOI: 10.12015/issn.1674-8034.2021.02.028.
[34]
Frullano L, Wang CN, Miller RH, et al. A myelin-specific contrast agent for magnetic resonance imaging of myelination[J]. J Am Chem Soc, 2011, 133(6): 1611-1613. DOI: 10.1021/ja1040896.
[35]
Frullano L, Zhu JQ, Miller RH, et al. Synthesis and characterization of a novel gadolinium-based contrast agent for magnetic resonance imaging of myelination[J]. J Med Chem, 2013, 56(4): 1629-1640. DOI: 10.1021/jm301435z.
[36]
Carotenuto A, Giordano B, Dervenoulas G, et al. [18F]Florbetapir PET/MR imaging to assess demyelination in multiple sclerosis[J]. Eur J Nucl Med Mol Imaging, 2020, 47(2): 366-378. DOI: 10.1007/s00259-019-04533-y.
[37]
Zhang M, Liu J, Li B, et al. 18F-florbetapir PET/MRI for quantitatively monitoring demyelination and remyelination in acute disseminated encephalomyelitis[J/OL]. EJNMMI Res, 2019, 9(1) [2022-03-04]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-019-0568-8. DOI: 10.1186/s13550-019-0568-8.
[38]
Zhang M, Ni Y, Zhou QM, et al. 18F-florbetapir PET/MRI for quantitatively monitoring myelin loss and recovery in patients with multiple sclerosis: a longitudinal study[J]. EClinicalMedicine, 2021 [2022-03-04]. https://doi.org/10.1016/j.eclinm.2021.100982. DOI: 10.1016/j.eclinm.2021.100982.
[39]
Xin W, Chan JR. Myelin plasticity: sculpting circuits in learning and memory[J]. Nat Rev Neurosci, 2020, 21(12): 682-694. DOI: 10.1038/s41583-020-00379-8.
[40]
de Faria O, Pivonkova H, Varga B, et al. Periods of synchronized myelin changes shape brain function and plasticity[J]. Nat Neurosci, 2021, 24(11): 1508-1521. DOI: 10.1038/s41593-021-00917-2.
[41]
Villoslada P, Steinman L. New targets and therapeutics for neuroprotection, remyelination and repair in multiple sclerosis[J]. Expert Opin Investig Drugs, 2020, 29(5): 443-459. DOI: 10.1080/13543784.2020.1757647.
[42]
Pyatigorskaya N, Habert MO, Rozenblum L. Contribution of PET-MRI in brain diseases in clinical practice[J]. Curr Opin Neurol, 2020, 33(4): 430-438. DOI: 10.1097/wco.0000000000000841.

PREV Research progress of multimodal magnetic resonance imaging in glioma genotyping
NEXT Progress of new MRI technology in parotid gland tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn