Share this content in WeChat
Research progress of multimodal MRI in the diagnosis and prognosis assessment of acute ischemic stroke
QIN Yuanlin  YU Hao  CHEN Yueqin 

Cite this article as: Qin YL, Yu H, Chen YQ. Research progress of multimodal MRI in the diagnosis and prognosis assessment of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(8): 112-116. DOI:10.12015/issn.1674-8034.2022.08.025.

[Abstract] The incidence of acute ischemic stroke (AIS) is rising gradually and has become the second common cause of death worldwide and the leading cause of permanent disability. Multimodal magnetic resonance imaging provides useful information for diagnosis, treatment choice, and prognosis assessment through comprehensive evaluation by multi-parameter and multi-sequence imaging. In recent years, MRI technique to predict prognosis and outcome of AIS has become a research hotspot. This review summarizes the progress of multimodal MRI in the diagnosis and prognosis assessment of acute ischemic stroke.
[Keywords] acute ischemic stroke;diagnosis;prognosis;magnetic resonance imaging;susceptibility weighted imaging;perfusion weighted imaging;amide proton transfer

QIN Yuanlin1   YU Hao2   CHEN Yueqin2*  

1 Clinical Medical College of Jining Medical University, Jining 272013, China

2 Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining 272029, China

Chen YQ, E-mail:

Conflicts of interest   None.

Received  2022-04-16
Accepted  2022-08-10
DOI: 10.12015/issn.1674-8034.2022.08.025
Cite this article as: Qin YL, Yu H, Chen YQ. Research progress of multimodal MRI in the diagnosis and prognosis assessment of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(8): 112-116.DOI:10.12015/issn.1674-8034.2022.08.025

Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct[J]. N Engl J Med, 2018, 378(1): 11-21. DOI: 10.1056/NEJMoa1706442.
Albers GW, Marks MP, Kemp S, et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging[J]. N Engl J Med, 2018, 378(8): 708-718. DOI: 10.1056/NEJMoa1713973.
Benzakoun J, Deslys MA, Legrand L, et al. Synthetic FLAIR as a Substitute for FLAIR Sequence in Acute Ischemic Stroke[J]. Radiology, 2022, 303(1): 153-159. DOI: 10.1148/radiol.211394.
Zhu H, Jiang L, Zhang H, et al. An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging[J/OL]. Neuroimage Clin, 2021 [2022-03-15]. DOI: 10.1016/j.nicl.2021.102744.
Zeng L, Chen J, Liao H, et al. Fluid-Attenuated Inversion Recovery Vascular Hyperintensity in Cerebrovascular Disease: A Review for Radiologists and Clinicians[J/OL]. Front Aging Neurosci, 2021 [2022-03-15]. DOI: 10.3389/fnagi.2021.790626.
Legrand L, Turc G, Edjlali M, et al. Benefit from revascularization after thrombectomy according to FLAIR vascular hyperintensities-DWI mismatch[J]. Eur Radiol, 2019, 29(10): 5567-5576. DOI: 10.1007/s00330-019-06094-y.
Shang WJ, Chen HB, Shu LM, et al. The Association between FLAIR Vascular Hyperintensity and Stroke Outcome Varies with Time from Onset[J]. AJNR Am J Neuroradiol, 2019, 40(8): 1317-1322. DOI: 10.3174/ajnr.A6142.
Wang E, Wu C, Yang D, et al. Association between fluid-attenuated inversion recovery vascular hyperintensity and outcome varies with different lesion patterns in patients with intravenous thrombolysis[J]. Stroke Vasc Neurol, 2021, 6(3): 449-457. DOI: 10.1136/svn-2020-000641.
Li G, Huang R, Bi G. The impact of FLAIR vascular hyperintensity on clinical severity and outcome : A retrospective study in stroke patients with proximal middle cerebral artery stenosis or occlusion[J]. Neurol Sci, 2021, 42(2): 589-598. DOI: 10.1007/s10072-020-04513-3.
Jiang L, Chen YC, Zhang H, et al. FLAIR vascular hyperintensity in acute stroke is associated with collateralization and functional outcome[J]. Eur Radiol, 2019, 29(9): 4879-4888. DOI: 10.1007/s00330-019-06022-0.
Zhu L, Jiang F, Wang M, et al. Fluid-Attenuated Inversion Recovery Vascular Hyperintensity as a Potential Predictor for the Prognosis of Acute Stroke Patients After Intravenous Thrombolysis[J/OL]. Front Neurosci, 2021 [2022-03-20]. DOI: 10.3389/fnins.2021.808436.
Kim DH, Lee YK, Cha JK. Prominent FLAIR Vascular Hyperintensity Is a Predictor of Unfavorable Outcomes in Non-thrombolysed Ischemic Stroke Patients With Mild Symptoms and Large Artery Occlusion[J/OL]. Front Neurol, 2019 [2022-03-20]. DOI: 10.3389/fneur.2019.00722.
Boujan T, Neuberger U, Pfaff J, et al. Value of Contrast-Enhanced MRA versus Time-of-Flight MRA in Acute Ischemic Stroke MRI[J]. AJNR Am J Neuroradiol, 2018, 39(9): 1710-1716. DOI: 10.3174/ajnr.A5771.
Jadhav AP, Desai SM, Liebeskind DS, et al. Neuroimaging of Acute Stroke[J]. Neurol Clin, 2020, 38(1): 185-199. DOI: 10.1016/j.ncl.2019.09.004.
Chen GH, Qiu JB, Zheng SQ, et al. The value of collateral vessels on magnetic resonance angiography in the prognosis of stroke patients after mechanical thrombectomy associated with clinical outcomes[J]. Chin J Magn Reson Imaging, 2020, 11(4): 270-274. DOI: 10.12015/issn.1674-8034.2020.04.006.
Kim JM, Jung KH, Sohn CH, et al. Intracranial plaque enhancement from high resolution vessel wall magnetic resonance imaging predicts stroke recurrence[J]. Int J Stroke, 2016, 11(2): 171-179. DOI: 10.1177/1747493015609775.
Vilela P, Rowley HA. Brain ischemia: CT and MRI techniques in acute ischemic stroke[J]. Eur J Radiol, 2017, 96: 162-172. DOI: 10.1016/j.ejrad.2017.08.014.
Raoult H, Lassalle MV, Parat B, et al. DWI-Based Algorithm to Predict Disability in Patients Treated with Thrombectomy for Acute Stroke[J]. AJNR Am J Neuroradiol, 2020, 41(2): 274-279. DOI: 10.3174/ajnr.A6379.
Zhou SB, Zhang XM, Gao Y, et al. Diffusion-weighted imaging volume and diffusion-weighted imaging volume growth in acute stroke: associations with fluid-attenuated inversion recovery hyperintensities-diffusion-weighted imaging mismatch and functional outcome[J]. Neuroreport, 2019, 30(13): 875-881. DOI: 10.1097/wnr.0000000000001291.
Jiang L, Peng M, Chen H, et al. Diffusion-weighted imaging (DWI) ischemic volume is related to FLAIR hyperintensity-DWI mismatch and functional outcome after endovascular therapy[J]. Quant Imaging Med Surg, 2020, 10(2): 356-367. DOI: 10.21037/qims.2019.12.05.
Nagaraja N. Diffusion weighted imaging in acute ischemic stroke: A review of its interpretation pitfalls and advanced diffusion imaging application[J/OL]. J Neurol Sci, 2021 [2022-03-23]. DOI: 10.1016/j.jns.2021.117435.
Tae WS, Ham BJ, Pyun SB, et al. Current Clinical Applications of Diffusion-Tensor Imaging in Neurological Disorders[J]. J Clin Neurol, 2018, 14(2): 129-140. DOI: 10.3988/jcn.2018.14.2.129.
Yin J, Sun H, Wang Z, et al. Diffusion Kurtosis Imaging of Acute Infarction: Comparison with Routine Diffusion and Follow-up MR Imaging[J]. Radiology, 2018, 287(2): 651-657. DOI: 10.1148/radiol.2017170553.
Haller S, Haacke EM, Thurnher MM, et al. Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications[J]. Radiology, 2021, 299(1): 3-26. DOI: 10.1148/radiol.2021203071.
Lu X, Meng L, Zhou Y, et al. Quantitative susceptibility-weighted imaging may be an accurate method for determining stroke hypoperfusion and hypoxia of penumbra[J]. Eur Radiol, 2021, 31(8): 6323-6333. DOI: 10.1007/s00330-020-07485-2.
Wang YR, Li ZS, Huang W, et al. The Value of Susceptibility-Weighted Imaging (SWI) in Evaluating the Ischemic Penumbra of Patients with Acute Cerebral Ischemic Stroke[J]. Neuropsychiatr Dis Treat, 2021, 17: 1745-1750. DOI: 10.2147/ndt.S301870.
Oh M, Lee M. Clinical Implications of Prominent Cortical Vessels on Susceptibility-Weighted Imaging in Acute Ischemic Stroke Patients Treated with Recanalization Therapy[J/OL]. Brain Sci, 2022 [2022-03-28]. DOI: 10.3390/brainsci12020184.
Lu X, Luo Y, Fawaz M, et al. Dynamic Changes of Asymmetric Cortical Veins Relate to Neurologic Prognosis in Acute Ischemic Stroke[J]. Radiology, 2021, 301(3): 672-681. DOI: 10.1148/radiol.2021210201.
Geng LN, Yuan T, Quan GM, et al. Progress in the evaluation of acute ischemic stroke with cortical and medullary venous sign[J]. International Journal of Medical Radiology, 2019, 42(5): 539-542. DOI: 10.19300/j.2019.Z6952.
Liu HQ, Mei WL, Wang C, et al. Predictive value of susceptibility vessel sign in clinical outcomes of patients with acute anterior circulation ischemic stroke[J]. Chinese Journal of Neuromedicine, 2017, 16(12): 1218-1224. DOI: 10.3760/cma.j.issn.1671-8925.2017.12.007.
Soize S, Manceau PF, Gauberti M, et al. Susceptibility Vessel Sign in Relation With Time From Onset to Magnetic Resonance Imaging[J]. Stroke, 2021, 52(5): 1839-1842. DOI: 10.1161/strokeaha.120.032198.
Lee DH, Sung JH, Yi HJ, et al. Effect on Successful Recanalization of Thrombus Length in Susceptibility-weighted Imaging in Mechanical Thrombectomy with Stentretrieval[J]. Curr Neurovasc Res, 2021, 18(1): 78-84. DOI: 10.2174/1567202618666210225102029.
He L, Wang J, Wang F, et al. The length of susceptibility vessel sign predicts early neurological deterioration in minor acute ischemic stroke with large vessel occlusion[J/OL]. BMC Neurol, 2021 [2022-03-30]. DOI: 10.1186/s12883-021-02455-7.
Tang SZ, Sen J, Goh YG, et al. Susceptibility vessel sign as a predictor for recanalization and clinical outcome in acute ischaemic stroke: A systematic review and meta-analysis[J]. J Clin Neurosci, 2021, 94: 159-165. DOI: 10.1016/j.jocn.2021.10.017.
Seners P, Oppenheim C, Turc G, et al. Perfusion Imaging and Clinical Outcome in Acute Ischemic Stroke with Large Core[J]. Ann Neurol, 2021, 90(3): 417-427. DOI: 10.1002/ana.26152.
Jiang L, Ai Z, Geng W, et al. Predictive value of perfusion weighted imaging for early new lesions after stroke patients receive endovascular treatment[J]. Quant Imaging Med Surg, 2021, 11(8): 3643-3654. DOI: 10.21037/qims-21-1.
Shin J, Kim YS, Jang HS, et al. Perfusion recovery on TTP maps after endovascular stroke treatment might predict favorable neurological outcomes[J]. Eur Radiol, 2020, 30(12): 6421-6431. DOI: 10.1007/s00330-020-07066-3.
Liu J, Lin C, Minuti A, et al. Arterial spin labeling compared to dynamic susceptibility contrast MR perfusion imaging for assessment of ischemic penumbra: A systematic review[J]. J Neuroimaging, 2021, 31(6): 1067-1076. DOI: 10.1111/jon.12913.
Lu SS, Cao YZ, Su CQ, et al. Hyperperfusion on Arterial Spin Labeling MRI Predicts the 90-Day Functional Outcome After Mechanical Thrombectomy in Ischemic Stroke[J]. J Magn Reson Imaging, 2021, 53(6): 1815-1822. DOI: 10.1002/jmri.27455.
Thamm T, Guo J, Rosenberg J, et al. Contralateral Hemispheric Cerebral Blood Flow Measured With Arterial Spin Labeling Can Predict Outcome in Acute Stroke[J]. Stroke, 2019, 50(12): 3408-3415. DOI: 10.1161/strokeaha.119.026499.
Liu SN, Xie CM. Recent advance in assessment of collateral circulation in patients with ischemic stroke based on arterial spin labeling magnetic resonance imaging[J]. Chinese Journal of Neuromedicine, 2020, 19(9): 909-915. DOI: 10.3760/cma.j.cn115354-20200225-00116.
Morofuji Y, Horie N, Tateishi Y, et al. Arterial Spin Labeling Magnetic Resonance Imaging Can Identify the Occlusion Site and Collateral Perfusion in Patients with Acute Ischemic Stroke: Comparison with Digital Subtraction Angiography[J]. Cerebrovasc Dis, 2019, 48(1-2): 70-76. DOI: 10.1159/000503090.
Nam KW, Kim CK, Yoon BW, et al. Multiphase arterial spin labeling imaging to predict early recurrent ischemic lesion in acute ischemic stroke[J/OL]. Sci Rep, 2022 [2022-04-01]. DOI: 10.1038/s41598-022-05465-8.
Mccullough-Hicks ME, Yu Y, Mlynash M, et al. The bright vessel sign on arterial spin labeling MRI for heralding and localizing large vessel occlusions[J]. J Neuroimaging, 2021, 31(5): 925-930. DOI: 10.1111/jon.12888.
Cheung J, Doerr M, Hu R, et al. Refined Ischemic Penumbra Imaging with Tissue pH and Diffusion Kurtosis Magnetic Resonance Imaging[J]. Transl Stroke Res, 2021, 12(5): 742-753. DOI: 10.1007/s12975-020-00868-z.
Song G, Li C, Luo X, et al. Evolution of Cerebral Ischemia Assessed by Amide Proton Transfer-Weighted MRI[J/OL]. Front Neurol, 2017 [2022-04-01]. DOI: 10.3389/fneur.2017.00067.
Yu L, Chen Y, Chen M, et al. Amide Proton Transfer MRI Signal as a Surrogate Biomarker of Ischemic Stroke Recovery in Patients With Supportive Treatment[J/OL]. Front Neurol, 2019 [2022-04-03]. DOI: 10.3389/fneur.2019.00104.
Lin G, Zhuang C, Shen Z, et al. APT Weighted MRI as an Effective Imaging Protocol to Predict Clinical Outcome After Acute Ischemic Stroke[J/OL]. Front Neurol, 2018 [2022-04-04]. DOI: 10.3389/fneur.2018.00901.
Momosaka D, Togao O, Kikuchi K, et al. Correlations of amide proton transfer-weighted MRI of cerebral infarction with clinico-radiological findings[J/OL]. PLoS One, 2020 [2022-04-04]. DOI: 10.1371/journal.pone.0237358.
Foo LS, Larkin JR, Sutherland BA, et al. Study of common quantification methods of amide proton transfer magnetic resonance imaging for ischemic stroke detection[J]. Magn Reson Med, 2021, 85(4): 2188-2200. DOI: 10.1002/mrm.28565.
Sun PZ. Consistent depiction of the acidic ischemic lesion with APT MRI-Dual RF power evaluation of pH-sensitive image in acute stroke[J]. Magn Reson Med, 2022, 87(2): 850-858. DOI: 10.1002/mrm.29029.

PREV Research progress of multimodal MRI in tension-type headache
NEXT The application and prospect of combined functional magnetic resonance imaging and transcranial magnetic stimulation on the modulation of brain functional network

Tel & Fax: +8610-67113815    E-mail: